up follow livre
This commit is contained in:
		
							parent
							
								
									b4b4398bb0
								
							
						
					
					
						commit
						3a7a3849ae
					
				
					 12242 changed files with 2564461 additions and 6914 deletions
				
			
		
							
								
								
									
										832
									
								
								venv/lib/python3.13/site-packages/scipy/cluster/vq.py
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										832
									
								
								venv/lib/python3.13/site-packages/scipy/cluster/vq.py
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,832 @@ | |||
| """ | ||||
| K-means clustering and vector quantization (:mod:`scipy.cluster.vq`) | ||||
| ==================================================================== | ||||
| 
 | ||||
| Provides routines for k-means clustering, generating code books | ||||
| from k-means models and quantizing vectors by comparing them with | ||||
| centroids in a code book. | ||||
| 
 | ||||
| .. autosummary:: | ||||
|    :toctree: generated/ | ||||
| 
 | ||||
|    whiten -- Normalize a group of observations so each feature has unit variance | ||||
|    vq -- Calculate code book membership of a set of observation vectors | ||||
|    kmeans -- Perform k-means on a set of observation vectors forming k clusters | ||||
|    kmeans2 -- A different implementation of k-means with more methods | ||||
|            -- for initializing centroids | ||||
| 
 | ||||
| Background information | ||||
| ---------------------- | ||||
| The k-means algorithm takes as input the number of clusters to | ||||
| generate, k, and a set of observation vectors to cluster. It | ||||
| returns a set of centroids, one for each of the k clusters. An | ||||
| observation vector is classified with the cluster number or | ||||
| centroid index of the centroid closest to it. | ||||
| 
 | ||||
| A vector v belongs to cluster i if it is closer to centroid i than | ||||
| any other centroid. If v belongs to i, we say centroid i is the | ||||
| dominating centroid of v. The k-means algorithm tries to | ||||
| minimize distortion, which is defined as the sum of the squared distances | ||||
| between each observation vector and its dominating centroid. | ||||
| The minimization is achieved by iteratively reclassifying | ||||
| the observations into clusters and recalculating the centroids until | ||||
| a configuration is reached in which the centroids are stable. One can | ||||
| also define a maximum number of iterations. | ||||
| 
 | ||||
| Since vector quantization is a natural application for k-means, | ||||
| information theory terminology is often used. The centroid index | ||||
| or cluster index is also referred to as a "code" and the table | ||||
| mapping codes to centroids and, vice versa, is often referred to as a | ||||
| "code book". The result of k-means, a set of centroids, can be | ||||
| used to quantize vectors. Quantization aims to find an encoding of | ||||
| vectors that reduces the expected distortion. | ||||
| 
 | ||||
| All routines expect obs to be an M by N array, where the rows are | ||||
| the observation vectors. The codebook is a k by N array, where the | ||||
| ith row is the centroid of code word i. The observation vectors | ||||
| and centroids have the same feature dimension. | ||||
| 
 | ||||
| As an example, suppose we wish to compress a 24-bit color image | ||||
| (each pixel is represented by one byte for red, one for blue, and | ||||
| one for green) before sending it over the web. By using a smaller | ||||
| 8-bit encoding, we can reduce the amount of data by two | ||||
| thirds. Ideally, the colors for each of the 256 possible 8-bit | ||||
| encoding values should be chosen to minimize distortion of the | ||||
| color. Running k-means with k=256 generates a code book of 256 | ||||
| codes, which fills up all possible 8-bit sequences. Instead of | ||||
| sending a 3-byte value for each pixel, the 8-bit centroid index | ||||
| (or code word) of the dominating centroid is transmitted. The code | ||||
| book is also sent over the wire so each 8-bit code can be | ||||
| translated back to a 24-bit pixel value representation. If the | ||||
| image of interest was of an ocean, we would expect many 24-bit | ||||
| blues to be represented by 8-bit codes. If it was an image of a | ||||
| human face, more flesh-tone colors would be represented in the | ||||
| code book. | ||||
| 
 | ||||
| """ | ||||
| import warnings | ||||
| import numpy as np | ||||
| from collections import deque | ||||
| from scipy._lib._array_api import (_asarray, array_namespace, is_lazy_array, | ||||
|                                    xp_capabilities, xp_copy, xp_size) | ||||
| from scipy._lib._util import (check_random_state, rng_integers, | ||||
|                               _transition_to_rng) | ||||
| from scipy._lib import array_api_extra as xpx | ||||
| from scipy.spatial.distance import cdist | ||||
| 
 | ||||
| from . import _vq | ||||
| 
 | ||||
| __docformat__ = 'restructuredtext' | ||||
| 
 | ||||
| __all__ = ['whiten', 'vq', 'kmeans', 'kmeans2'] | ||||
| 
 | ||||
| 
 | ||||
| class ClusterError(Exception): | ||||
|     pass | ||||
| 
 | ||||
| 
 | ||||
| @xp_capabilities() | ||||
| def whiten(obs, check_finite=None): | ||||
|     """ | ||||
|     Normalize a group of observations on a per feature basis. | ||||
| 
 | ||||
|     Before running k-means, it is beneficial to rescale each feature | ||||
|     dimension of the observation set by its standard deviation (i.e. "whiten" | ||||
|     it - as in "white noise" where each frequency has equal power). | ||||
|     Each feature is divided by its standard deviation across all observations | ||||
|     to give it unit variance. | ||||
| 
 | ||||
|     Parameters | ||||
|     ---------- | ||||
|     obs : ndarray | ||||
|         Each row of the array is an observation.  The | ||||
|         columns are the features seen during each observation:: | ||||
| 
 | ||||
|             #        f0  f1  f2 | ||||
|             obs = [[ 1., 1., 1.],  #o0 | ||||
|                    [ 2., 2., 2.],  #o1 | ||||
|                    [ 3., 3., 3.],  #o2 | ||||
|                    [ 4., 4., 4.]]  #o3 | ||||
| 
 | ||||
|     check_finite : bool, optional | ||||
|         Whether to check that the input matrices contain only finite numbers. | ||||
|         Disabling may give a performance gain, but may result in problems | ||||
|         (crashes, non-termination) if the inputs do contain infinities or NaNs. | ||||
|         Default: True for eager backends and False for lazy ones. | ||||
| 
 | ||||
|     Returns | ||||
|     ------- | ||||
|     result : ndarray | ||||
|         Contains the values in `obs` scaled by the standard deviation | ||||
|         of each column. | ||||
| 
 | ||||
|     Examples | ||||
|     -------- | ||||
|     >>> import numpy as np | ||||
|     >>> from scipy.cluster.vq import whiten | ||||
|     >>> features  = np.array([[1.9, 2.3, 1.7], | ||||
|     ...                       [1.5, 2.5, 2.2], | ||||
|     ...                       [0.8, 0.6, 1.7,]]) | ||||
|     >>> whiten(features) | ||||
|     array([[ 4.17944278,  2.69811351,  7.21248917], | ||||
|            [ 3.29956009,  2.93273208,  9.33380951], | ||||
|            [ 1.75976538,  0.7038557 ,  7.21248917]]) | ||||
| 
 | ||||
|     """ | ||||
|     xp = array_namespace(obs) | ||||
|     if check_finite is None: | ||||
|         check_finite = not is_lazy_array(obs) | ||||
|     obs = _asarray(obs, check_finite=check_finite, xp=xp) | ||||
|     std_dev = xp.std(obs, axis=0) | ||||
|     zero_std_mask = std_dev == 0 | ||||
|     std_dev = xpx.at(std_dev, zero_std_mask).set(1.0) | ||||
|     if check_finite and xp.any(zero_std_mask): | ||||
|         warnings.warn("Some columns have standard deviation zero. " | ||||
|                       "The values of these columns will not change.", | ||||
|                       RuntimeWarning, stacklevel=2) | ||||
|     return obs / std_dev | ||||
| 
 | ||||
| 
 | ||||
| @xp_capabilities(cpu_only=True, reason="uses spatial.distance.cdist", | ||||
|                  jax_jit=False, allow_dask_compute=True) | ||||
| def vq(obs, code_book, check_finite=True): | ||||
|     """ | ||||
|     Assign codes from a code book to observations. | ||||
| 
 | ||||
|     Assigns a code from a code book to each observation. Each | ||||
|     observation vector in the 'M' by 'N' `obs` array is compared with the | ||||
|     centroids in the code book and assigned the code of the closest | ||||
|     centroid. | ||||
| 
 | ||||
|     The features in `obs` should have unit variance, which can be | ||||
|     achieved by passing them through the whiten function. The code | ||||
|     book can be created with the k-means algorithm or a different | ||||
|     encoding algorithm. | ||||
| 
 | ||||
|     Parameters | ||||
|     ---------- | ||||
|     obs : ndarray | ||||
|         Each row of the 'M' x 'N' array is an observation. The columns are | ||||
|         the "features" seen during each observation. The features must be | ||||
|         whitened first using the whiten function or something equivalent. | ||||
|     code_book : ndarray | ||||
|         The code book is usually generated using the k-means algorithm. | ||||
|         Each row of the array holds a different code, and the columns are | ||||
|         the features of the code:: | ||||
| 
 | ||||
|             #              f0  f1  f2  f3 | ||||
|             code_book = [[ 1., 2., 3., 4.],  #c0 | ||||
|                          [ 1., 2., 3., 4.],  #c1 | ||||
|                          [ 1., 2., 3., 4.]]  #c2 | ||||
| 
 | ||||
|     check_finite : bool, optional | ||||
|         Whether to check that the input matrices contain only finite numbers. | ||||
|         Disabling may give a performance gain, but may result in problems | ||||
|         (crashes, non-termination) if the inputs do contain infinities or NaNs. | ||||
|         Default: True | ||||
| 
 | ||||
|     Returns | ||||
|     ------- | ||||
|     code : ndarray | ||||
|         A length M array holding the code book index for each observation. | ||||
|     dist : ndarray | ||||
|         The distortion (distance) between the observation and its nearest | ||||
|         code. | ||||
| 
 | ||||
|     Examples | ||||
|     -------- | ||||
|     >>> import numpy as np | ||||
|     >>> from scipy.cluster.vq import vq | ||||
|     >>> code_book = np.array([[1., 1., 1.], | ||||
|     ...                       [2., 2., 2.]]) | ||||
|     >>> features  = np.array([[1.9, 2.3, 1.7], | ||||
|     ...                       [1.5, 2.5, 2.2], | ||||
|     ...                       [0.8, 0.6, 1.7]]) | ||||
|     >>> vq(features, code_book) | ||||
|     (array([1, 1, 0], dtype=int32), array([0.43588989, 0.73484692, 0.83066239])) | ||||
| 
 | ||||
|     """ | ||||
|     xp = array_namespace(obs, code_book) | ||||
|     obs = _asarray(obs, xp=xp, check_finite=check_finite) | ||||
|     code_book = _asarray(code_book, xp=xp, check_finite=check_finite) | ||||
|     ct = xp.result_type(obs, code_book) | ||||
| 
 | ||||
|     if xp.isdtype(ct, kind='real floating'): | ||||
|         c_obs = xp.astype(obs, ct, copy=False) | ||||
|         c_code_book = xp.astype(code_book, ct, copy=False) | ||||
|         c_obs = np.asarray(c_obs) | ||||
|         c_code_book = np.asarray(c_code_book) | ||||
|         result = _vq.vq(c_obs, c_code_book) | ||||
|         return xp.asarray(result[0]), xp.asarray(result[1]) | ||||
|     return py_vq(obs, code_book, check_finite=False) | ||||
| 
 | ||||
| 
 | ||||
| def py_vq(obs, code_book, check_finite=True): | ||||
|     """ Python version of vq algorithm. | ||||
| 
 | ||||
|     The algorithm computes the Euclidean distance between each | ||||
|     observation and every frame in the code_book. | ||||
| 
 | ||||
|     Parameters | ||||
|     ---------- | ||||
|     obs : ndarray | ||||
|         Expects a rank 2 array. Each row is one observation. | ||||
|     code_book : ndarray | ||||
|         Code book to use. Same format than obs. Should have same number of | ||||
|         features (e.g., columns) than obs. | ||||
|     check_finite : bool, optional | ||||
|         Whether to check that the input matrices contain only finite numbers. | ||||
|         Disabling may give a performance gain, but may result in problems | ||||
|         (crashes, non-termination) if the inputs do contain infinities or NaNs. | ||||
|         Default: True | ||||
| 
 | ||||
|     Returns | ||||
|     ------- | ||||
|     code : ndarray | ||||
|         code[i] gives the label of the ith obversation; its code is | ||||
|         code_book[code[i]]. | ||||
|     mind_dist : ndarray | ||||
|         min_dist[i] gives the distance between the ith observation and its | ||||
|         corresponding code. | ||||
| 
 | ||||
|     Notes | ||||
|     ----- | ||||
|     This function is slower than the C version but works for | ||||
|     all input types. If the inputs have the wrong types for the | ||||
|     C versions of the function, this one is called as a last resort. | ||||
| 
 | ||||
|     It is about 20 times slower than the C version. | ||||
| 
 | ||||
|     """ | ||||
|     xp = array_namespace(obs, code_book) | ||||
|     obs = _asarray(obs, xp=xp, check_finite=check_finite) | ||||
|     code_book = _asarray(code_book, xp=xp, check_finite=check_finite) | ||||
| 
 | ||||
|     if obs.ndim != code_book.ndim: | ||||
|         raise ValueError("Observation and code_book should have the same rank") | ||||
| 
 | ||||
|     if obs.ndim == 1: | ||||
|         obs = obs[:, xp.newaxis] | ||||
|         code_book = code_book[:, xp.newaxis] | ||||
| 
 | ||||
|     # Once `cdist` has array API support, this `xp.asarray` call can be removed | ||||
|     dist = xp.asarray(cdist(obs, code_book)) | ||||
|     code = xp.argmin(dist, axis=1) | ||||
|     min_dist = xp.min(dist, axis=1) | ||||
|     return code, min_dist | ||||
| 
 | ||||
| 
 | ||||
| def _kmeans(obs, guess, thresh=1e-5, xp=None): | ||||
|     """ "raw" version of k-means. | ||||
| 
 | ||||
|     Returns | ||||
|     ------- | ||||
|     code_book | ||||
|         The lowest distortion codebook found. | ||||
|     avg_dist | ||||
|         The average distance a observation is from a code in the book. | ||||
|         Lower means the code_book matches the data better. | ||||
| 
 | ||||
|     See Also | ||||
|     -------- | ||||
|     kmeans : wrapper around k-means | ||||
| 
 | ||||
|     Examples | ||||
|     -------- | ||||
|     Note: not whitened in this example. | ||||
| 
 | ||||
|     >>> import numpy as np | ||||
|     >>> from scipy.cluster.vq import _kmeans | ||||
|     >>> features  = np.array([[ 1.9,2.3], | ||||
|     ...                       [ 1.5,2.5], | ||||
|     ...                       [ 0.8,0.6], | ||||
|     ...                       [ 0.4,1.8], | ||||
|     ...                       [ 1.0,1.0]]) | ||||
|     >>> book = np.array((features[0],features[2])) | ||||
|     >>> _kmeans(features,book) | ||||
|     (array([[ 1.7       ,  2.4       ], | ||||
|            [ 0.73333333,  1.13333333]]), 0.40563916697728591) | ||||
| 
 | ||||
|     """ | ||||
|     xp = np if xp is None else xp | ||||
|     code_book = guess | ||||
|     diff = xp.inf | ||||
|     prev_avg_dists = deque([diff], maxlen=2) | ||||
| 
 | ||||
|     np_obs = np.asarray(obs) | ||||
|     while diff > thresh: | ||||
|         # compute membership and distances between obs and code_book | ||||
|         obs_code, distort = vq(obs, code_book, check_finite=False) | ||||
|         prev_avg_dists.append(xp.mean(distort, axis=-1)) | ||||
|         # recalc code_book as centroids of associated obs | ||||
|         obs_code = np.asarray(obs_code) | ||||
|         code_book, has_members = _vq.update_cluster_means(np_obs, obs_code, | ||||
|                                                           code_book.shape[0]) | ||||
|         code_book = code_book[has_members] | ||||
|         code_book = xp.asarray(code_book) | ||||
|         diff = xp.abs(prev_avg_dists[0] - prev_avg_dists[1]) | ||||
| 
 | ||||
|     return code_book, prev_avg_dists[1] | ||||
| 
 | ||||
| 
 | ||||
| @xp_capabilities(cpu_only=True, jax_jit=False, allow_dask_compute=True) | ||||
| @_transition_to_rng("seed") | ||||
| def kmeans(obs, k_or_guess, iter=20, thresh=1e-5, check_finite=True, | ||||
|            *, rng=None): | ||||
|     """ | ||||
|     Performs k-means on a set of observation vectors forming k clusters. | ||||
| 
 | ||||
|     The k-means algorithm adjusts the classification of the observations | ||||
|     into clusters and updates the cluster centroids until the position of | ||||
|     the centroids is stable over successive iterations. In this | ||||
|     implementation of the algorithm, the stability of the centroids is | ||||
|     determined by comparing the absolute value of the change in the average | ||||
|     Euclidean distance between the observations and their corresponding | ||||
|     centroids against a threshold. This yields | ||||
|     a code book mapping centroids to codes and vice versa. | ||||
| 
 | ||||
|     Parameters | ||||
|     ---------- | ||||
|     obs : ndarray | ||||
|        Each row of the M by N array is an observation vector. The | ||||
|        columns are the features seen during each observation. | ||||
|        The features must be whitened first with the `whiten` function. | ||||
| 
 | ||||
|     k_or_guess : int or ndarray | ||||
|        The number of centroids to generate. A code is assigned to | ||||
|        each centroid, which is also the row index of the centroid | ||||
|        in the code_book matrix generated. | ||||
| 
 | ||||
|        The initial k centroids are chosen by randomly selecting | ||||
|        observations from the observation matrix. Alternatively, | ||||
|        passing a k by N array specifies the initial k centroids. | ||||
| 
 | ||||
|     iter : int, optional | ||||
|        The number of times to run k-means, returning the codebook | ||||
|        with the lowest distortion. This argument is ignored if | ||||
|        initial centroids are specified with an array for the | ||||
|        ``k_or_guess`` parameter. This parameter does not represent the | ||||
|        number of iterations of the k-means algorithm. | ||||
| 
 | ||||
|     thresh : float, optional | ||||
|        Terminates the k-means algorithm if the change in | ||||
|        distortion since the last k-means iteration is less than | ||||
|        or equal to threshold. | ||||
| 
 | ||||
|     check_finite : bool, optional | ||||
|         Whether to check that the input matrices contain only finite numbers. | ||||
|         Disabling may give a performance gain, but may result in problems | ||||
|         (crashes, non-termination) if the inputs do contain infinities or NaNs. | ||||
|         Default: True | ||||
|     rng : `numpy.random.Generator`, optional | ||||
|         Pseudorandom number generator state. When `rng` is None, a new | ||||
|         `numpy.random.Generator` is created using entropy from the | ||||
|         operating system. Types other than `numpy.random.Generator` are | ||||
|         passed to `numpy.random.default_rng` to instantiate a ``Generator``. | ||||
| 
 | ||||
|     Returns | ||||
|     ------- | ||||
|     codebook : ndarray | ||||
|        A k by N array of k centroids. The ith centroid | ||||
|        codebook[i] is represented with the code i. The centroids | ||||
|        and codes generated represent the lowest distortion seen, | ||||
|        not necessarily the globally minimal distortion. | ||||
|        Note that the number of centroids is not necessarily the same as the | ||||
|        ``k_or_guess`` parameter, because centroids assigned to no observations | ||||
|        are removed during iterations. | ||||
| 
 | ||||
|     distortion : float | ||||
|        The mean (non-squared) Euclidean distance between the observations | ||||
|        passed and the centroids generated. Note the difference to the standard | ||||
|        definition of distortion in the context of the k-means algorithm, which | ||||
|        is the sum of the squared distances. | ||||
| 
 | ||||
|     See Also | ||||
|     -------- | ||||
|     kmeans2 : a different implementation of k-means clustering | ||||
|        with more methods for generating initial centroids but without | ||||
|        using a distortion change threshold as a stopping criterion. | ||||
| 
 | ||||
|     whiten : must be called prior to passing an observation matrix | ||||
|        to kmeans. | ||||
| 
 | ||||
|     Notes | ||||
|     ----- | ||||
|     For more functionalities or optimal performance, you can use | ||||
|     `sklearn.cluster.KMeans <https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html>`_. | ||||
|     `This <https://hdbscan.readthedocs.io/en/latest/performance_and_scalability.html#comparison-of-high-performance-implementations>`_ | ||||
|     is a benchmark result of several implementations. | ||||
| 
 | ||||
|     Examples | ||||
|     -------- | ||||
|     >>> import numpy as np | ||||
|     >>> from scipy.cluster.vq import vq, kmeans, whiten | ||||
|     >>> import matplotlib.pyplot as plt | ||||
|     >>> features  = np.array([[ 1.9,2.3], | ||||
|     ...                       [ 1.5,2.5], | ||||
|     ...                       [ 0.8,0.6], | ||||
|     ...                       [ 0.4,1.8], | ||||
|     ...                       [ 0.1,0.1], | ||||
|     ...                       [ 0.2,1.8], | ||||
|     ...                       [ 2.0,0.5], | ||||
|     ...                       [ 0.3,1.5], | ||||
|     ...                       [ 1.0,1.0]]) | ||||
|     >>> whitened = whiten(features) | ||||
|     >>> book = np.array((whitened[0],whitened[2])) | ||||
|     >>> kmeans(whitened,book) | ||||
|     (array([[ 2.3110306 ,  2.86287398],    # random | ||||
|            [ 0.93218041,  1.24398691]]), 0.85684700941625547) | ||||
| 
 | ||||
|     >>> codes = 3 | ||||
|     >>> kmeans(whitened,codes) | ||||
|     (array([[ 2.3110306 ,  2.86287398],    # random | ||||
|            [ 1.32544402,  0.65607529], | ||||
|            [ 0.40782893,  2.02786907]]), 0.5196582527686241) | ||||
| 
 | ||||
|     >>> # Create 50 datapoints in two clusters a and b | ||||
|     >>> pts = 50 | ||||
|     >>> rng = np.random.default_rng() | ||||
|     >>> a = rng.multivariate_normal([0, 0], [[4, 1], [1, 4]], size=pts) | ||||
|     >>> b = rng.multivariate_normal([30, 10], | ||||
|     ...                             [[10, 2], [2, 1]], | ||||
|     ...                             size=pts) | ||||
|     >>> features = np.concatenate((a, b)) | ||||
|     >>> # Whiten data | ||||
|     >>> whitened = whiten(features) | ||||
|     >>> # Find 2 clusters in the data | ||||
|     >>> codebook, distortion = kmeans(whitened, 2) | ||||
|     >>> # Plot whitened data and cluster centers in red | ||||
|     >>> plt.scatter(whitened[:, 0], whitened[:, 1]) | ||||
|     >>> plt.scatter(codebook[:, 0], codebook[:, 1], c='r') | ||||
|     >>> plt.show() | ||||
| 
 | ||||
|     """ | ||||
|     if isinstance(k_or_guess, int): | ||||
|         xp = array_namespace(obs) | ||||
|     else: | ||||
|         xp = array_namespace(obs, k_or_guess) | ||||
|     obs = _asarray(obs, xp=xp, check_finite=check_finite) | ||||
|     guess = _asarray(k_or_guess, xp=xp, check_finite=check_finite) | ||||
|     if iter < 1: | ||||
|         raise ValueError(f"iter must be at least 1, got {iter}") | ||||
| 
 | ||||
|     # Determine whether a count (scalar) or an initial guess (array) was passed. | ||||
|     if xp_size(guess) != 1: | ||||
|         if xp_size(guess) < 1: | ||||
|             raise ValueError(f"Asked for 0 clusters. Initial book was {guess}") | ||||
|         return _kmeans(obs, guess, thresh=thresh, xp=xp) | ||||
| 
 | ||||
|     # k_or_guess is a scalar, now verify that it's an integer | ||||
|     k = int(guess) | ||||
|     if k != guess: | ||||
|         raise ValueError("If k_or_guess is a scalar, it must be an integer.") | ||||
|     if k < 1: | ||||
|         raise ValueError(f"Asked for {k} clusters.") | ||||
| 
 | ||||
|     rng = check_random_state(rng) | ||||
| 
 | ||||
|     # initialize best distance value to a large value | ||||
|     best_dist = xp.inf | ||||
|     for i in range(iter): | ||||
|         # the initial code book is randomly selected from observations | ||||
|         guess = _kpoints(obs, k, rng, xp) | ||||
|         book, dist = _kmeans(obs, guess, thresh=thresh, xp=xp) | ||||
|         if dist < best_dist: | ||||
|             best_book = book | ||||
|             best_dist = dist | ||||
|     return best_book, best_dist | ||||
| 
 | ||||
| 
 | ||||
| def _kpoints(data, k, rng, xp): | ||||
|     """Pick k points at random in data (one row = one observation). | ||||
| 
 | ||||
|     Parameters | ||||
|     ---------- | ||||
|     data : ndarray | ||||
|         Expect a rank 1 or 2 array. Rank 1 are assumed to describe one | ||||
|         dimensional data, rank 2 multidimensional data, in which case one | ||||
|         row is one observation. | ||||
|     k : int | ||||
|         Number of samples to generate. | ||||
|     rng : `numpy.random.Generator` or `numpy.random.RandomState` | ||||
|         Random number generator. | ||||
| 
 | ||||
|     Returns | ||||
|     ------- | ||||
|     x : ndarray | ||||
|         A 'k' by 'N' containing the initial centroids | ||||
| 
 | ||||
|     """ | ||||
|     idx = rng.choice(data.shape[0], size=int(k), replace=False) | ||||
|     # convert to array with default integer dtype (avoids numpy#25607) | ||||
|     idx = xp.asarray(idx, dtype=xp.asarray([1]).dtype) | ||||
|     return xp.take(data, idx, axis=0) | ||||
| 
 | ||||
| 
 | ||||
| def _krandinit(data, k, rng, xp): | ||||
|     """Returns k samples of a random variable whose parameters depend on data. | ||||
| 
 | ||||
|     More precisely, it returns k observations sampled from a Gaussian random | ||||
|     variable whose mean and covariances are the ones estimated from the data. | ||||
| 
 | ||||
|     Parameters | ||||
|     ---------- | ||||
|     data : ndarray | ||||
|         Expect a rank 1 or 2 array. Rank 1 is assumed to describe 1-D | ||||
|         data, rank 2 multidimensional data, in which case one | ||||
|         row is one observation. | ||||
|     k : int | ||||
|         Number of samples to generate. | ||||
|     rng : `numpy.random.Generator` or `numpy.random.RandomState` | ||||
|         Random number generator. | ||||
| 
 | ||||
|     Returns | ||||
|     ------- | ||||
|     x : ndarray | ||||
|         A 'k' by 'N' containing the initial centroids | ||||
| 
 | ||||
|     """ | ||||
|     mu = xp.mean(data, axis=0) | ||||
|     k = np.asarray(k) | ||||
| 
 | ||||
|     if data.ndim == 1: | ||||
|         _cov = xpx.cov(data, xp=xp) | ||||
|         x = rng.standard_normal(size=k) | ||||
|         x = xp.asarray(x) | ||||
|         x *= xp.sqrt(_cov) | ||||
|     elif data.shape[1] > data.shape[0]: | ||||
|         # initialize when the covariance matrix is rank deficient | ||||
|         _, s, vh = xp.linalg.svd(data - mu, full_matrices=False) | ||||
|         x = rng.standard_normal(size=(k, xp_size(s))) | ||||
|         x = xp.asarray(x) | ||||
|         sVh = s[:, None] * vh / xp.sqrt(data.shape[0] - xp.asarray(1.)) | ||||
|         x = x @ sVh | ||||
|     else: | ||||
|         _cov = xpx.atleast_nd(xpx.cov(data.T, xp=xp), ndim=2, xp=xp) | ||||
| 
 | ||||
|         # k rows, d cols (one row = one obs) | ||||
|         # Generate k sample of a random variable ~ Gaussian(mu, cov) | ||||
|         x = rng.standard_normal(size=(k, xp_size(mu))) | ||||
|         x = xp.asarray(x) | ||||
|         x = x @ xp.linalg.cholesky(_cov).T | ||||
| 
 | ||||
|     x += mu | ||||
|     return x | ||||
| 
 | ||||
| 
 | ||||
| def _kpp(data, k, rng, xp): | ||||
|     """ Picks k points in the data based on the kmeans++ method. | ||||
| 
 | ||||
|     Parameters | ||||
|     ---------- | ||||
|     data : ndarray | ||||
|         Expect a rank 1 or 2 array. Rank 1 is assumed to describe 1-D | ||||
|         data, rank 2 multidimensional data, in which case one | ||||
|         row is one observation. | ||||
|     k : int | ||||
|         Number of samples to generate. | ||||
|     rng : `numpy.random.Generator` or `numpy.random.RandomState` | ||||
|         Random number generator. | ||||
| 
 | ||||
|     Returns | ||||
|     ------- | ||||
|     init : ndarray | ||||
|         A 'k' by 'N' containing the initial centroids. | ||||
| 
 | ||||
|     References | ||||
|     ---------- | ||||
|     .. [1] D. Arthur and S. Vassilvitskii, "k-means++: the advantages of | ||||
|        careful seeding", Proceedings of the Eighteenth Annual ACM-SIAM Symposium | ||||
|        on Discrete Algorithms, 2007. | ||||
|     """ | ||||
| 
 | ||||
|     ndim = len(data.shape) | ||||
|     if ndim == 1: | ||||
|         data = data[:, None] | ||||
| 
 | ||||
|     dims = data.shape[1] | ||||
| 
 | ||||
|     init = xp.empty((int(k), dims)) | ||||
| 
 | ||||
|     for i in range(k): | ||||
|         if i == 0: | ||||
|             data_idx = rng_integers(rng, data.shape[0]) | ||||
|         else: | ||||
|             D2 = cdist(init[:i,:], data, metric='sqeuclidean').min(axis=0) | ||||
|             probs = D2/D2.sum() | ||||
|             cumprobs = probs.cumsum() | ||||
|             r = rng.uniform() | ||||
|             cumprobs = np.asarray(cumprobs) | ||||
|             data_idx = int(np.searchsorted(cumprobs, r)) | ||||
| 
 | ||||
|         init = xpx.at(init)[i, :].set(data[data_idx, :]) | ||||
| 
 | ||||
|     if ndim == 1: | ||||
|         init = init[:, 0] | ||||
|     return init | ||||
| 
 | ||||
| 
 | ||||
| _valid_init_meth = {'random': _krandinit, 'points': _kpoints, '++': _kpp} | ||||
| 
 | ||||
| 
 | ||||
| def _missing_warn(): | ||||
|     """Print a warning when called.""" | ||||
|     warnings.warn("One of the clusters is empty. " | ||||
|                   "Re-run kmeans with a different initialization.", | ||||
|                   stacklevel=3) | ||||
| 
 | ||||
| 
 | ||||
| def _missing_raise(): | ||||
|     """Raise a ClusterError when called.""" | ||||
|     raise ClusterError("One of the clusters is empty. " | ||||
|                        "Re-run kmeans with a different initialization.") | ||||
| 
 | ||||
| 
 | ||||
| _valid_miss_meth = {'warn': _missing_warn, 'raise': _missing_raise} | ||||
| 
 | ||||
| 
 | ||||
| @xp_capabilities(cpu_only=True, jax_jit=False, allow_dask_compute=True) | ||||
| @_transition_to_rng("seed") | ||||
| def kmeans2(data, k, iter=10, thresh=1e-5, minit='random', | ||||
|             missing='warn', check_finite=True, *, rng=None): | ||||
|     """ | ||||
|     Classify a set of observations into k clusters using the k-means algorithm. | ||||
| 
 | ||||
|     The algorithm attempts to minimize the Euclidean distance between | ||||
|     observations and centroids. Several initialization methods are | ||||
|     included. | ||||
| 
 | ||||
|     Parameters | ||||
|     ---------- | ||||
|     data : ndarray | ||||
|         A 'M' by 'N' array of 'M' observations in 'N' dimensions or a length | ||||
|         'M' array of 'M' 1-D observations. | ||||
|     k : int or ndarray | ||||
|         The number of clusters to form as well as the number of | ||||
|         centroids to generate. If `minit` initialization string is | ||||
|         'matrix', or if a ndarray is given instead, it is | ||||
|         interpreted as initial cluster to use instead. | ||||
|     iter : int, optional | ||||
|         Number of iterations of the k-means algorithm to run. Note | ||||
|         that this differs in meaning from the iters parameter to | ||||
|         the kmeans function. | ||||
|     thresh : float, optional | ||||
|         (not used yet) | ||||
|     minit : str, optional | ||||
|         Method for initialization. Available methods are 'random', | ||||
|         'points', '++' and 'matrix': | ||||
| 
 | ||||
|         'random': generate k centroids from a Gaussian with mean and | ||||
|         variance estimated from the data. | ||||
| 
 | ||||
|         'points': choose k observations (rows) at random from data for | ||||
|         the initial centroids. | ||||
| 
 | ||||
|         '++': choose k observations accordingly to the kmeans++ method | ||||
|         (careful seeding) | ||||
| 
 | ||||
|         'matrix': interpret the k parameter as a k by M (or length k | ||||
|         array for 1-D data) array of initial centroids. | ||||
|     missing : str, optional | ||||
|         Method to deal with empty clusters. Available methods are | ||||
|         'warn' and 'raise': | ||||
| 
 | ||||
|         'warn': give a warning and continue. | ||||
| 
 | ||||
|         'raise': raise an ClusterError and terminate the algorithm. | ||||
|     check_finite : bool, optional | ||||
|         Whether to check that the input matrices contain only finite numbers. | ||||
|         Disabling may give a performance gain, but may result in problems | ||||
|         (crashes, non-termination) if the inputs do contain infinities or NaNs. | ||||
|         Default: True | ||||
|     rng : `numpy.random.Generator`, optional | ||||
|         Pseudorandom number generator state. When `rng` is None, a new | ||||
|         `numpy.random.Generator` is created using entropy from the | ||||
|         operating system. Types other than `numpy.random.Generator` are | ||||
|         passed to `numpy.random.default_rng` to instantiate a ``Generator``. | ||||
| 
 | ||||
|     Returns | ||||
|     ------- | ||||
|     centroid : ndarray | ||||
|         A 'k' by 'N' array of centroids found at the last iteration of | ||||
|         k-means. | ||||
|     label : ndarray | ||||
|         label[i] is the code or index of the centroid the | ||||
|         ith observation is closest to. | ||||
| 
 | ||||
|     See Also | ||||
|     -------- | ||||
|     kmeans | ||||
| 
 | ||||
|     References | ||||
|     ---------- | ||||
|     .. [1] D. Arthur and S. Vassilvitskii, "k-means++: the advantages of | ||||
|        careful seeding", Proceedings of the Eighteenth Annual ACM-SIAM Symposium | ||||
|        on Discrete Algorithms, 2007. | ||||
| 
 | ||||
|     Examples | ||||
|     -------- | ||||
|     >>> from scipy.cluster.vq import kmeans2 | ||||
|     >>> import matplotlib.pyplot as plt | ||||
|     >>> import numpy as np | ||||
| 
 | ||||
|     Create z, an array with shape (100, 2) containing a mixture of samples | ||||
|     from three multivariate normal distributions. | ||||
| 
 | ||||
|     >>> rng = np.random.default_rng() | ||||
|     >>> a = rng.multivariate_normal([0, 6], [[2, 1], [1, 1.5]], size=45) | ||||
|     >>> b = rng.multivariate_normal([2, 0], [[1, -1], [-1, 3]], size=30) | ||||
|     >>> c = rng.multivariate_normal([6, 4], [[5, 0], [0, 1.2]], size=25) | ||||
|     >>> z = np.concatenate((a, b, c)) | ||||
|     >>> rng.shuffle(z) | ||||
| 
 | ||||
|     Compute three clusters. | ||||
| 
 | ||||
|     >>> centroid, label = kmeans2(z, 3, minit='points') | ||||
|     >>> centroid | ||||
|     array([[ 2.22274463, -0.61666946],  # may vary | ||||
|            [ 0.54069047,  5.86541444], | ||||
|            [ 6.73846769,  4.01991898]]) | ||||
| 
 | ||||
|     How many points are in each cluster? | ||||
| 
 | ||||
|     >>> counts = np.bincount(label) | ||||
|     >>> counts | ||||
|     array([29, 51, 20])  # may vary | ||||
| 
 | ||||
|     Plot the clusters. | ||||
| 
 | ||||
|     >>> w0 = z[label == 0] | ||||
|     >>> w1 = z[label == 1] | ||||
|     >>> w2 = z[label == 2] | ||||
|     >>> plt.plot(w0[:, 0], w0[:, 1], 'o', alpha=0.5, label='cluster 0') | ||||
|     >>> plt.plot(w1[:, 0], w1[:, 1], 'd', alpha=0.5, label='cluster 1') | ||||
|     >>> plt.plot(w2[:, 0], w2[:, 1], 's', alpha=0.5, label='cluster 2') | ||||
|     >>> plt.plot(centroid[:, 0], centroid[:, 1], 'k*', label='centroids') | ||||
|     >>> plt.axis('equal') | ||||
|     >>> plt.legend(shadow=True) | ||||
|     >>> plt.show() | ||||
| 
 | ||||
|     """ | ||||
|     if int(iter) < 1: | ||||
|         raise ValueError(f"Invalid iter ({iter}), must be a positive integer.") | ||||
|     try: | ||||
|         miss_meth = _valid_miss_meth[missing] | ||||
|     except KeyError as e: | ||||
|         raise ValueError(f"Unknown missing method {missing!r}") from e | ||||
| 
 | ||||
|     if isinstance(k, int): | ||||
|         xp = array_namespace(data) | ||||
|     else: | ||||
|         xp = array_namespace(data, k) | ||||
|     data = _asarray(data, xp=xp, check_finite=check_finite) | ||||
|     code_book = xp_copy(k, xp=xp) | ||||
|     if data.ndim == 1: | ||||
|         d = 1 | ||||
|     elif data.ndim == 2: | ||||
|         d = data.shape[1] | ||||
|     else: | ||||
|         raise ValueError("Input of rank > 2 is not supported.") | ||||
| 
 | ||||
|     if xp_size(data) < 1 or xp_size(code_book) < 1: | ||||
|         raise ValueError("Empty input is not supported.") | ||||
| 
 | ||||
|     # If k is not a single value, it should be compatible with data's shape | ||||
|     if minit == 'matrix' or xp_size(code_book) > 1: | ||||
|         if data.ndim != code_book.ndim: | ||||
|             raise ValueError("k array doesn't match data rank") | ||||
|         nc = code_book.shape[0] | ||||
|         if data.ndim > 1 and code_book.shape[1] != d: | ||||
|             raise ValueError("k array doesn't match data dimension") | ||||
|     else: | ||||
|         nc = int(code_book) | ||||
| 
 | ||||
|         if nc < 1: | ||||
|             raise ValueError( | ||||
|                 f"Cannot ask kmeans2 for {nc} clusters (k was {code_book})" | ||||
|             ) | ||||
|         elif nc != code_book: | ||||
|             warnings.warn("k was not an integer, was converted.", stacklevel=2) | ||||
| 
 | ||||
|         try: | ||||
|             init_meth = _valid_init_meth[minit] | ||||
|         except KeyError as e: | ||||
|             raise ValueError(f"Unknown init method {minit!r}") from e | ||||
|         else: | ||||
|             rng = check_random_state(rng) | ||||
|             code_book = init_meth(data, code_book, rng, xp) | ||||
| 
 | ||||
|     data = np.asarray(data) | ||||
|     code_book = np.asarray(code_book) | ||||
|     for _ in range(iter): | ||||
|         # Compute the nearest neighbor for each obs using the current code book | ||||
|         label = vq(data, code_book, check_finite=check_finite)[0] | ||||
|         # Update the code book by computing centroids | ||||
|         new_code_book, has_members = _vq.update_cluster_means(data, label, nc) | ||||
|         if not has_members.all(): | ||||
|             miss_meth() | ||||
|             # Set the empty clusters to their previous positions | ||||
|             new_code_book[~has_members] = code_book[~has_members] | ||||
|         code_book = new_code_book | ||||
| 
 | ||||
|     return xp.asarray(code_book), xp.asarray(label) | ||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue
	
	 Tykayn
						Tykayn