up follow livre
This commit is contained in:
parent
b4b4398bb0
commit
3a7a3849ae
12242 changed files with 2564461 additions and 6914 deletions
174
venv/lib/python3.13/site-packages/scipy/ndimage/__init__.py
Normal file
174
venv/lib/python3.13/site-packages/scipy/ndimage/__init__.py
Normal file
|
|
@ -0,0 +1,174 @@
|
|||
"""
|
||||
=========================================================
|
||||
Multidimensional image processing (:mod:`scipy.ndimage`)
|
||||
=========================================================
|
||||
|
||||
.. currentmodule:: scipy.ndimage
|
||||
|
||||
This package contains various functions for multidimensional image
|
||||
processing.
|
||||
|
||||
|
||||
Filters
|
||||
=======
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
convolve - Multidimensional convolution
|
||||
convolve1d - 1-D convolution along the given axis
|
||||
correlate - Multidimensional correlation
|
||||
correlate1d - 1-D correlation along the given axis
|
||||
gaussian_filter
|
||||
gaussian_filter1d
|
||||
gaussian_gradient_magnitude
|
||||
gaussian_laplace
|
||||
generic_filter - Multidimensional filter using a given function
|
||||
generic_filter1d - 1-D generic filter along the given axis
|
||||
generic_gradient_magnitude
|
||||
generic_laplace
|
||||
laplace - N-D Laplace filter based on approximate second derivatives
|
||||
maximum_filter
|
||||
maximum_filter1d
|
||||
median_filter - Calculates a multidimensional median filter
|
||||
minimum_filter
|
||||
minimum_filter1d
|
||||
percentile_filter - Calculates a multidimensional percentile filter
|
||||
prewitt
|
||||
rank_filter - Calculates a multidimensional rank filter
|
||||
sobel
|
||||
uniform_filter - Multidimensional uniform filter
|
||||
uniform_filter1d - 1-D uniform filter along the given axis
|
||||
vectorized_filter
|
||||
|
||||
Fourier filters
|
||||
===============
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
fourier_ellipsoid
|
||||
fourier_gaussian
|
||||
fourier_shift
|
||||
fourier_uniform
|
||||
|
||||
Interpolation
|
||||
=============
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
affine_transform - Apply an affine transformation
|
||||
geometric_transform - Apply an arbitrary geometric transform
|
||||
map_coordinates - Map input array to new coordinates by interpolation
|
||||
rotate - Rotate an array
|
||||
shift - Shift an array
|
||||
spline_filter
|
||||
spline_filter1d
|
||||
zoom - Zoom an array
|
||||
|
||||
Measurements
|
||||
============
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
center_of_mass - The center of mass of the values of an array at labels
|
||||
extrema - Min's and max's of an array at labels, with their positions
|
||||
find_objects - Find objects in a labeled array
|
||||
histogram - Histogram of the values of an array, optionally at labels
|
||||
label - Label features in an array
|
||||
labeled_comprehension
|
||||
maximum
|
||||
maximum_position
|
||||
mean - Mean of the values of an array at labels
|
||||
median
|
||||
minimum
|
||||
minimum_position
|
||||
standard_deviation - Standard deviation of an N-D image array
|
||||
sum_labels - Sum of the values of the array
|
||||
value_indices - Find indices of each distinct value in given array
|
||||
variance - Variance of the values of an N-D image array
|
||||
watershed_ift
|
||||
|
||||
Morphology
|
||||
==========
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
binary_closing
|
||||
binary_dilation
|
||||
binary_erosion
|
||||
binary_fill_holes
|
||||
binary_hit_or_miss
|
||||
binary_opening
|
||||
binary_propagation
|
||||
black_tophat
|
||||
distance_transform_bf
|
||||
distance_transform_cdt
|
||||
distance_transform_edt
|
||||
generate_binary_structure
|
||||
grey_closing
|
||||
grey_dilation
|
||||
grey_erosion
|
||||
grey_opening
|
||||
iterate_structure
|
||||
morphological_gradient
|
||||
morphological_laplace
|
||||
white_tophat
|
||||
|
||||
"""
|
||||
|
||||
# Copyright (C) 2003-2005 Peter J. Verveer
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions
|
||||
# are met:
|
||||
#
|
||||
# 1. Redistributions of source code must retain the above copyright
|
||||
# notice, this list of conditions and the following disclaimer.
|
||||
#
|
||||
# 2. Redistributions in binary form must reproduce the above
|
||||
# copyright notice, this list of conditions and the following
|
||||
# disclaimer in the documentation and/or other materials provided
|
||||
# with the distribution.
|
||||
#
|
||||
# 3. The name of the author may not be used to endorse or promote
|
||||
# products derived from this software without specific prior
|
||||
# written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
|
||||
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
||||
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
||||
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
||||
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
# bring in the public functionality from private namespaces
|
||||
|
||||
# mypy: ignore-errors
|
||||
|
||||
from ._support_alternative_backends import *
|
||||
|
||||
# adjust __all__ and do not leak implementation details
|
||||
from . import _support_alternative_backends
|
||||
__all__ = _support_alternative_backends.__all__
|
||||
del _support_alternative_backends, _ndimage_api, _delegators # noqa: F821
|
||||
|
||||
|
||||
# Deprecated namespaces, to be removed in v2.0.0
|
||||
from . import filters
|
||||
from . import fourier
|
||||
from . import interpolation
|
||||
from . import measurements
|
||||
from . import morphology
|
||||
|
||||
from scipy._lib._testutils import PytestTester
|
||||
test = PytestTester(__name__)
|
||||
del PytestTester
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
303
venv/lib/python3.13/site-packages/scipy/ndimage/_delegators.py
Normal file
303
venv/lib/python3.13/site-packages/scipy/ndimage/_delegators.py
Normal file
|
|
@ -0,0 +1,303 @@
|
|||
"""Delegators for alternative backends in scipy.ndimage.
|
||||
|
||||
The signature of `func_signature` must match the signature of ndimage.func.
|
||||
The job of a `func_signature` is to know which arguments of `ndimage.func`
|
||||
are arrays.
|
||||
|
||||
* signatures are generated by
|
||||
|
||||
--------------
|
||||
import inspect
|
||||
from scipy import ndimage
|
||||
|
||||
names = [x for x in dir(ndimage) if not x.startswith('_')]
|
||||
objs = [getattr(ndimage, name) for name in names]
|
||||
funcs = [obj for obj in objs if inspect.isroutine(obj)]
|
||||
|
||||
for func in funcs:
|
||||
sig = inspect.signature(func)
|
||||
print(f"def {func.__name__}_signature{sig}:\n\tpass\n\n")
|
||||
---------------
|
||||
|
||||
* which arguments to delegate on: manually trawled the documentation for
|
||||
array-like and array arguments
|
||||
|
||||
"""
|
||||
import numpy as np
|
||||
from scipy._lib._array_api import array_namespace
|
||||
from scipy.ndimage._ni_support import _skip_if_dtype
|
||||
|
||||
|
||||
def affine_transform_signature(
|
||||
input, matrix, offset=0.0, output_shape=None, output=None, *args, **kwds
|
||||
):
|
||||
return array_namespace(input, matrix, _skip_if_dtype(output))
|
||||
|
||||
|
||||
def binary_closing_signature(
|
||||
input, structure=None, iterations=1, output=None, *args, **kwds
|
||||
):
|
||||
return array_namespace(input, structure, _skip_if_dtype(output))
|
||||
|
||||
binary_opening_signature = binary_closing_signature
|
||||
|
||||
|
||||
def binary_dilation_signature(
|
||||
input, structure=None, iterations=1, mask=None, output=None, *args, **kwds
|
||||
):
|
||||
return array_namespace(input, structure, _skip_if_dtype(output), mask)
|
||||
|
||||
binary_erosion_signature = binary_dilation_signature
|
||||
|
||||
|
||||
def binary_fill_holes_signature(
|
||||
input, structure=None, output=None, origin=0, *args, **kwargs
|
||||
):
|
||||
return array_namespace(input, structure, _skip_if_dtype(output))
|
||||
|
||||
|
||||
def label_signature(input, structure=None, output=None, origin=0):
|
||||
return array_namespace(input, structure, _skip_if_dtype(output))
|
||||
|
||||
|
||||
def binary_hit_or_miss_signature(
|
||||
input, structure1=None, structure2=None, output=None, *args, **kwds
|
||||
):
|
||||
return array_namespace(input, structure1, structure2, _skip_if_dtype(output))
|
||||
|
||||
|
||||
def binary_propagation_signature(
|
||||
input, structure=None, mask=None, output=None, *args, **kwds
|
||||
):
|
||||
return array_namespace(input, structure, mask, _skip_if_dtype(output))
|
||||
|
||||
|
||||
def convolve_signature(input, weights, output=None, *args, **kwds):
|
||||
return array_namespace(input, weights, _skip_if_dtype(output))
|
||||
|
||||
correlate_signature = convolve_signature
|
||||
|
||||
|
||||
def convolve1d_signature(input, weights, axis=-1, output=None, *args, **kwds):
|
||||
return array_namespace(input, weights, _skip_if_dtype(output))
|
||||
|
||||
correlate1d_signature = convolve1d_signature
|
||||
|
||||
|
||||
def distance_transform_bf_signature(
|
||||
input, metric='euclidean', sampling=None, return_distances=True,
|
||||
return_indices=False, distances=None, indices=None
|
||||
):
|
||||
return array_namespace(input, distances, indices)
|
||||
|
||||
|
||||
def distance_transform_cdt_signature(
|
||||
input, metric='chessboard', return_distances=True, return_indices=False,
|
||||
distances=None, indices=None
|
||||
):
|
||||
return array_namespace(input, distances, indices)
|
||||
|
||||
|
||||
def distance_transform_edt_signature(
|
||||
input, sampling=None, return_distances=True, return_indices=False,
|
||||
distances=None, indices=None
|
||||
):
|
||||
return array_namespace(input, distances, indices)
|
||||
|
||||
|
||||
def find_objects_signature(input, max_label=0):
|
||||
return array_namespace(input)
|
||||
|
||||
|
||||
def fourier_ellipsoid_signature(input, size, n=-1, axis=-1, output=None):
|
||||
return array_namespace(input, _skip_if_dtype(output))
|
||||
|
||||
fourier_uniform_signature = fourier_ellipsoid_signature
|
||||
|
||||
|
||||
def fourier_gaussian_signature(input, sigma, n=-1, axis=-1, output=None):
|
||||
return array_namespace(input, _skip_if_dtype(output))
|
||||
|
||||
def fourier_shift_signature(input, shift, n=-1, axis=-1, output=None):
|
||||
return array_namespace(input, _skip_if_dtype(output))
|
||||
|
||||
|
||||
def gaussian_filter_signature(input, sigma, order=0, output=None, *args, **kwds):
|
||||
return array_namespace(input, _skip_if_dtype(output))
|
||||
|
||||
|
||||
def gaussian_filter1d_signature(
|
||||
input, sigma, axis=-1, order=0, output=None, *args, **kwds
|
||||
):
|
||||
return array_namespace(input, _skip_if_dtype(output))
|
||||
|
||||
|
||||
def gaussian_gradient_magnitude_signature(input, sigma, output=None, *args, **kwds):
|
||||
return array_namespace(input, _skip_if_dtype(output))
|
||||
|
||||
gaussian_laplace_signature = gaussian_gradient_magnitude_signature
|
||||
|
||||
|
||||
def generate_binary_structure_signature(rank, connectivity):
|
||||
# XXX: no input arrays; always return numpy
|
||||
return np
|
||||
|
||||
|
||||
def generic_filter_signature(
|
||||
input, function, size=None, footprint=None, output=None, *args, **kwds
|
||||
):
|
||||
# XXX: function LowLevelCallable w/backends
|
||||
return array_namespace(input, footprint, _skip_if_dtype(output))
|
||||
|
||||
|
||||
def generic_filter1d_signature(
|
||||
input, function, filter_size, axis=-1, output=None, *args, **kwds
|
||||
):
|
||||
return array_namespace(input, _skip_if_dtype(output))
|
||||
|
||||
|
||||
def generic_gradient_magnitude_signature(
|
||||
input, derivative, output=None, *args, **kwds
|
||||
):
|
||||
# XXX: function LowLevelCallable w/backends
|
||||
return array_namespace(input, _skip_if_dtype(output))
|
||||
|
||||
|
||||
def generic_laplace_signature(input, derivative2, output=None, *args, **kwds):
|
||||
# XXX: function LowLevelCallable w/backends
|
||||
return array_namespace(input, _skip_if_dtype(output))
|
||||
|
||||
|
||||
def geometric_transform_signature(
|
||||
input, mapping, output_shape=None, output=None, *args, **kwds
|
||||
):
|
||||
return array_namespace(input, _skip_if_dtype(output))
|
||||
|
||||
|
||||
def histogram_signature(input, min, max, bins, labels=None, index=None):
|
||||
return array_namespace(input, labels)
|
||||
|
||||
|
||||
def iterate_structure_signature(structure, iterations, origin=None):
|
||||
return array_namespace(structure)
|
||||
|
||||
|
||||
def labeled_comprehension_signature(input, labels, *args, **kwds):
|
||||
return array_namespace(input, labels)
|
||||
|
||||
|
||||
def laplace_signature(input, output=None, *args, **kwds):
|
||||
return array_namespace(input, _skip_if_dtype(output))
|
||||
|
||||
|
||||
def map_coordinates_signature(input, coordinates, output=None, *args, **kwds):
|
||||
return array_namespace(input, coordinates, _skip_if_dtype(output))
|
||||
|
||||
|
||||
def maximum_filter1d_signature(input, size, axis=-1, output=None, *args, **kwds):
|
||||
return array_namespace(input, _skip_if_dtype(output))
|
||||
|
||||
minimum_filter1d_signature = maximum_filter1d_signature
|
||||
uniform_filter1d_signature = maximum_filter1d_signature
|
||||
|
||||
|
||||
def maximum_signature(input, labels=None, index=None):
|
||||
return array_namespace(input, labels, index)
|
||||
|
||||
minimum_signature = maximum_signature
|
||||
median_signature = maximum_signature
|
||||
mean_signature = maximum_signature
|
||||
variance_signature = maximum_signature
|
||||
standard_deviation_signature = maximum_signature
|
||||
sum_labels_signature = maximum_signature
|
||||
sum_signature = maximum_signature # ndimage.sum is sum_labels
|
||||
|
||||
maximum_position_signature = maximum_signature
|
||||
minimum_position_signature = maximum_signature
|
||||
|
||||
extrema_signature = maximum_signature
|
||||
center_of_mass_signature = extrema_signature
|
||||
|
||||
|
||||
def median_filter_signature(
|
||||
input, size=None, footprint=None, output=None, *args, **kwds
|
||||
):
|
||||
return array_namespace(input, footprint, _skip_if_dtype(output))
|
||||
|
||||
minimum_filter_signature = median_filter_signature
|
||||
maximum_filter_signature = median_filter_signature
|
||||
|
||||
|
||||
def morphological_gradient_signature(
|
||||
input, size=None, footprint=None, structure=None, output=None, *args, **kwds
|
||||
):
|
||||
return array_namespace(input, footprint, structure, _skip_if_dtype(output))
|
||||
|
||||
morphological_laplace_signature = morphological_gradient_signature
|
||||
white_tophat_signature = morphological_gradient_signature
|
||||
black_tophat_signature = morphological_gradient_signature
|
||||
grey_closing_signature = morphological_gradient_signature
|
||||
grey_dilation_signature = morphological_gradient_signature
|
||||
grey_erosion_signature = morphological_gradient_signature
|
||||
grey_opening_signature = morphological_gradient_signature
|
||||
|
||||
|
||||
def percentile_filter_signature(
|
||||
input, percentile, size=None, footprint=None, output=None, *args, **kwds
|
||||
):
|
||||
return array_namespace(input, footprint, _skip_if_dtype(output))
|
||||
|
||||
|
||||
def prewitt_signature(input, axis=-1, output=None, *args, **kwds):
|
||||
return array_namespace(input, _skip_if_dtype(output))
|
||||
|
||||
sobel_signature = prewitt_signature
|
||||
|
||||
|
||||
def rank_filter_signature(
|
||||
input, rank, size=None, footprint=None, output=None, *args, **kwds
|
||||
):
|
||||
return array_namespace(input, footprint, _skip_if_dtype(output))
|
||||
|
||||
|
||||
def rotate_signature(
|
||||
input, angle, axes=(1, 0), reshape=True, output=None , *args, **kwds
|
||||
):
|
||||
return array_namespace(input, _skip_if_dtype(output))
|
||||
|
||||
|
||||
def shift_signature(input, shift, output=None, *args, **kwds):
|
||||
return array_namespace(input, _skip_if_dtype(output))
|
||||
|
||||
|
||||
def spline_filter_signature(input, order=3, output=np.float64, *args, **kwds):
|
||||
return array_namespace(input, _skip_if_dtype(output))
|
||||
|
||||
|
||||
def spline_filter1d_signature(
|
||||
input, order=3, axis=-1, output=np.float64, *args, **kwds
|
||||
):
|
||||
return array_namespace(input, _skip_if_dtype(output))
|
||||
|
||||
|
||||
def uniform_filter_signature(input, size=3, output=None, *args, **kwds):
|
||||
return array_namespace(input, _skip_if_dtype(output))
|
||||
|
||||
|
||||
def value_indices_signature(arr, *args, **kwds):
|
||||
return array_namespace(arr)
|
||||
|
||||
|
||||
def vectorized_filter_signature(
|
||||
input, function, size=None, footprint=None, output=None, *args, **kwds
|
||||
):
|
||||
return array_namespace(input, footprint, _skip_if_dtype(output))
|
||||
|
||||
|
||||
def watershed_ift_signature(input, markers, structure=None, output=None):
|
||||
return array_namespace(input, markers, structure, _skip_if_dtype(output))
|
||||
|
||||
|
||||
def zoom_signature(input, zoom, output=None, *args, **kwds):
|
||||
return array_namespace(input, _skip_if_dtype(output))
|
||||
|
||||
2422
venv/lib/python3.13/site-packages/scipy/ndimage/_filters.py
Normal file
2422
venv/lib/python3.13/site-packages/scipy/ndimage/_filters.py
Normal file
File diff suppressed because it is too large
Load diff
306
venv/lib/python3.13/site-packages/scipy/ndimage/_fourier.py
Normal file
306
venv/lib/python3.13/site-packages/scipy/ndimage/_fourier.py
Normal file
|
|
@ -0,0 +1,306 @@
|
|||
# Copyright (C) 2003-2005 Peter J. Verveer
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions
|
||||
# are met:
|
||||
#
|
||||
# 1. Redistributions of source code must retain the above copyright
|
||||
# notice, this list of conditions and the following disclaimer.
|
||||
#
|
||||
# 2. Redistributions in binary form must reproduce the above
|
||||
# copyright notice, this list of conditions and the following
|
||||
# disclaimer in the documentation and/or other materials provided
|
||||
# with the distribution.
|
||||
#
|
||||
# 3. The name of the author may not be used to endorse or promote
|
||||
# products derived from this software without specific prior
|
||||
# written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
|
||||
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
||||
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
||||
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
||||
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
import numpy as np
|
||||
from scipy._lib._util import normalize_axis_index
|
||||
from . import _ni_support
|
||||
from . import _nd_image
|
||||
|
||||
__all__ = ['fourier_gaussian', 'fourier_uniform', 'fourier_ellipsoid',
|
||||
'fourier_shift']
|
||||
|
||||
|
||||
def _get_output_fourier(output, input):
|
||||
if output is None:
|
||||
if input.dtype.type in [np.complex64, np.complex128, np.float32]:
|
||||
output = np.zeros(input.shape, dtype=input.dtype)
|
||||
else:
|
||||
output = np.zeros(input.shape, dtype=np.float64)
|
||||
elif type(output) is type:
|
||||
if output not in [np.complex64, np.complex128,
|
||||
np.float32, np.float64]:
|
||||
raise RuntimeError("output type not supported")
|
||||
output = np.zeros(input.shape, dtype=output)
|
||||
elif output.shape != input.shape:
|
||||
raise RuntimeError("output shape not correct")
|
||||
return output
|
||||
|
||||
|
||||
def _get_output_fourier_complex(output, input):
|
||||
if output is None:
|
||||
if input.dtype.type in [np.complex64, np.complex128]:
|
||||
output = np.zeros(input.shape, dtype=input.dtype)
|
||||
else:
|
||||
output = np.zeros(input.shape, dtype=np.complex128)
|
||||
elif type(output) is type:
|
||||
if output not in [np.complex64, np.complex128]:
|
||||
raise RuntimeError("output type not supported")
|
||||
output = np.zeros(input.shape, dtype=output)
|
||||
elif output.shape != input.shape:
|
||||
raise RuntimeError("output shape not correct")
|
||||
return output
|
||||
|
||||
|
||||
def fourier_gaussian(input, sigma, n=-1, axis=-1, output=None):
|
||||
"""
|
||||
Multidimensional Gaussian fourier filter.
|
||||
|
||||
The array is multiplied with the fourier transform of a Gaussian
|
||||
kernel.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
input : array_like
|
||||
The input array.
|
||||
sigma : float or sequence
|
||||
The sigma of the Gaussian kernel. If a float, `sigma` is the same for
|
||||
all axes. If a sequence, `sigma` has to contain one value for each
|
||||
axis.
|
||||
n : int, optional
|
||||
If `n` is negative (default), then the input is assumed to be the
|
||||
result of a complex fft.
|
||||
If `n` is larger than or equal to zero, the input is assumed to be the
|
||||
result of a real fft, and `n` gives the length of the array before
|
||||
transformation along the real transform direction.
|
||||
axis : int, optional
|
||||
The axis of the real transform.
|
||||
output : ndarray, optional
|
||||
If given, the result of filtering the input is placed in this array.
|
||||
|
||||
Returns
|
||||
-------
|
||||
fourier_gaussian : ndarray
|
||||
The filtered input.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy import ndimage, datasets
|
||||
>>> import numpy.fft
|
||||
>>> import matplotlib.pyplot as plt
|
||||
>>> fig, (ax1, ax2) = plt.subplots(1, 2)
|
||||
>>> plt.gray() # show the filtered result in grayscale
|
||||
>>> ascent = datasets.ascent()
|
||||
>>> input_ = numpy.fft.fft2(ascent)
|
||||
>>> result = ndimage.fourier_gaussian(input_, sigma=4)
|
||||
>>> result = numpy.fft.ifft2(result)
|
||||
>>> ax1.imshow(ascent)
|
||||
>>> ax2.imshow(result.real) # the imaginary part is an artifact
|
||||
>>> plt.show()
|
||||
"""
|
||||
input = np.asarray(input)
|
||||
output = _get_output_fourier(output, input)
|
||||
axis = normalize_axis_index(axis, input.ndim)
|
||||
sigmas = _ni_support._normalize_sequence(sigma, input.ndim)
|
||||
sigmas = np.asarray(sigmas, dtype=np.float64)
|
||||
if not sigmas.flags.contiguous:
|
||||
sigmas = sigmas.copy()
|
||||
|
||||
_nd_image.fourier_filter(input, sigmas, n, axis, output, 0)
|
||||
return output
|
||||
|
||||
|
||||
def fourier_uniform(input, size, n=-1, axis=-1, output=None):
|
||||
"""
|
||||
Multidimensional uniform fourier filter.
|
||||
|
||||
The array is multiplied with the Fourier transform of a box of given
|
||||
size.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
input : array_like
|
||||
The input array.
|
||||
size : float or sequence
|
||||
The size of the box used for filtering.
|
||||
If a float, `size` is the same for all axes. If a sequence, `size` has
|
||||
to contain one value for each axis.
|
||||
n : int, optional
|
||||
If `n` is negative (default), then the input is assumed to be the
|
||||
result of a complex fft.
|
||||
If `n` is larger than or equal to zero, the input is assumed to be the
|
||||
result of a real fft, and `n` gives the length of the array before
|
||||
transformation along the real transform direction.
|
||||
axis : int, optional
|
||||
The axis of the real transform.
|
||||
output : ndarray, optional
|
||||
If given, the result of filtering the input is placed in this array.
|
||||
|
||||
Returns
|
||||
-------
|
||||
fourier_uniform : ndarray
|
||||
The filtered input.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy import ndimage, datasets
|
||||
>>> import numpy.fft
|
||||
>>> import matplotlib.pyplot as plt
|
||||
>>> fig, (ax1, ax2) = plt.subplots(1, 2)
|
||||
>>> plt.gray() # show the filtered result in grayscale
|
||||
>>> ascent = datasets.ascent()
|
||||
>>> input_ = numpy.fft.fft2(ascent)
|
||||
>>> result = ndimage.fourier_uniform(input_, size=20)
|
||||
>>> result = numpy.fft.ifft2(result)
|
||||
>>> ax1.imshow(ascent)
|
||||
>>> ax2.imshow(result.real) # the imaginary part is an artifact
|
||||
>>> plt.show()
|
||||
"""
|
||||
input = np.asarray(input)
|
||||
output = _get_output_fourier(output, input)
|
||||
axis = normalize_axis_index(axis, input.ndim)
|
||||
sizes = _ni_support._normalize_sequence(size, input.ndim)
|
||||
sizes = np.asarray(sizes, dtype=np.float64)
|
||||
if not sizes.flags.contiguous:
|
||||
sizes = sizes.copy()
|
||||
_nd_image.fourier_filter(input, sizes, n, axis, output, 1)
|
||||
return output
|
||||
|
||||
|
||||
def fourier_ellipsoid(input, size, n=-1, axis=-1, output=None):
|
||||
"""
|
||||
Multidimensional ellipsoid Fourier filter.
|
||||
|
||||
The array is multiplied with the fourier transform of an ellipsoid of
|
||||
given sizes.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
input : array_like
|
||||
The input array.
|
||||
size : float or sequence
|
||||
The size of the box used for filtering.
|
||||
If a float, `size` is the same for all axes. If a sequence, `size` has
|
||||
to contain one value for each axis.
|
||||
n : int, optional
|
||||
If `n` is negative (default), then the input is assumed to be the
|
||||
result of a complex fft.
|
||||
If `n` is larger than or equal to zero, the input is assumed to be the
|
||||
result of a real fft, and `n` gives the length of the array before
|
||||
transformation along the real transform direction.
|
||||
axis : int, optional
|
||||
The axis of the real transform.
|
||||
output : ndarray, optional
|
||||
If given, the result of filtering the input is placed in this array.
|
||||
|
||||
Returns
|
||||
-------
|
||||
fourier_ellipsoid : ndarray
|
||||
The filtered input.
|
||||
|
||||
Notes
|
||||
-----
|
||||
This function is implemented for arrays of rank 1, 2, or 3.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy import ndimage, datasets
|
||||
>>> import numpy.fft
|
||||
>>> import matplotlib.pyplot as plt
|
||||
>>> fig, (ax1, ax2) = plt.subplots(1, 2)
|
||||
>>> plt.gray() # show the filtered result in grayscale
|
||||
>>> ascent = datasets.ascent()
|
||||
>>> input_ = numpy.fft.fft2(ascent)
|
||||
>>> result = ndimage.fourier_ellipsoid(input_, size=20)
|
||||
>>> result = numpy.fft.ifft2(result)
|
||||
>>> ax1.imshow(ascent)
|
||||
>>> ax2.imshow(result.real) # the imaginary part is an artifact
|
||||
>>> plt.show()
|
||||
"""
|
||||
input = np.asarray(input)
|
||||
if input.ndim > 3:
|
||||
raise NotImplementedError("Only 1d, 2d and 3d inputs are supported")
|
||||
output = _get_output_fourier(output, input)
|
||||
if output.size == 0:
|
||||
# The C code has a bug that can result in a segfault with arrays
|
||||
# that have size 0 (gh-17270), so check here.
|
||||
return output
|
||||
axis = normalize_axis_index(axis, input.ndim)
|
||||
sizes = _ni_support._normalize_sequence(size, input.ndim)
|
||||
sizes = np.asarray(sizes, dtype=np.float64)
|
||||
if not sizes.flags.contiguous:
|
||||
sizes = sizes.copy()
|
||||
_nd_image.fourier_filter(input, sizes, n, axis, output, 2)
|
||||
return output
|
||||
|
||||
|
||||
def fourier_shift(input, shift, n=-1, axis=-1, output=None):
|
||||
"""
|
||||
Multidimensional Fourier shift filter.
|
||||
|
||||
The array is multiplied with the Fourier transform of a shift operation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
input : array_like
|
||||
The input array.
|
||||
shift : float or sequence
|
||||
The size of the box used for filtering.
|
||||
If a float, `shift` is the same for all axes. If a sequence, `shift`
|
||||
has to contain one value for each axis.
|
||||
n : int, optional
|
||||
If `n` is negative (default), then the input is assumed to be the
|
||||
result of a complex fft.
|
||||
If `n` is larger than or equal to zero, the input is assumed to be the
|
||||
result of a real fft, and `n` gives the length of the array before
|
||||
transformation along the real transform direction.
|
||||
axis : int, optional
|
||||
The axis of the real transform.
|
||||
output : ndarray, optional
|
||||
If given, the result of shifting the input is placed in this array.
|
||||
|
||||
Returns
|
||||
-------
|
||||
fourier_shift : ndarray
|
||||
The shifted input.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy import ndimage, datasets
|
||||
>>> import matplotlib.pyplot as plt
|
||||
>>> import numpy.fft
|
||||
>>> fig, (ax1, ax2) = plt.subplots(1, 2)
|
||||
>>> plt.gray() # show the filtered result in grayscale
|
||||
>>> ascent = datasets.ascent()
|
||||
>>> input_ = numpy.fft.fft2(ascent)
|
||||
>>> result = ndimage.fourier_shift(input_, shift=200)
|
||||
>>> result = numpy.fft.ifft2(result)
|
||||
>>> ax1.imshow(ascent)
|
||||
>>> ax2.imshow(result.real) # the imaginary part is an artifact
|
||||
>>> plt.show()
|
||||
"""
|
||||
input = np.asarray(input)
|
||||
output = _get_output_fourier_complex(output, input)
|
||||
axis = normalize_axis_index(axis, input.ndim)
|
||||
shifts = _ni_support._normalize_sequence(shift, input.ndim)
|
||||
shifts = np.asarray(shifts, dtype=np.float64)
|
||||
if not shifts.flags.contiguous:
|
||||
shifts = shifts.copy()
|
||||
_nd_image.fourier_shift(input, shifts, n, axis, output)
|
||||
return output
|
||||
1033
venv/lib/python3.13/site-packages/scipy/ndimage/_interpolation.py
Normal file
1033
venv/lib/python3.13/site-packages/scipy/ndimage/_interpolation.py
Normal file
File diff suppressed because it is too large
Load diff
1689
venv/lib/python3.13/site-packages/scipy/ndimage/_measurements.py
Normal file
1689
venv/lib/python3.13/site-packages/scipy/ndimage/_measurements.py
Normal file
File diff suppressed because it is too large
Load diff
2634
venv/lib/python3.13/site-packages/scipy/ndimage/_morphology.py
Normal file
2634
venv/lib/python3.13/site-packages/scipy/ndimage/_morphology.py
Normal file
File diff suppressed because it is too large
Load diff
Binary file not shown.
|
|
@ -0,0 +1,16 @@
|
|||
"""This is the 'bare' ndimage API.
|
||||
|
||||
This --- private! --- module only collects implementations of public ndimage API
|
||||
for _support_alternative_backends.
|
||||
The latter --- also private! --- module adds delegation to CuPy etc and
|
||||
re-exports decorated names to __init__.py
|
||||
"""
|
||||
|
||||
from ._filters import * # noqa: F403
|
||||
from ._fourier import * # noqa: F403
|
||||
from ._interpolation import * # noqa: F403
|
||||
from ._measurements import * # noqa: F403
|
||||
from ._morphology import * # noqa: F403
|
||||
|
||||
# '@' due to pytest bug, scipy/scipy#22236
|
||||
__all__ = [s for s in dir() if not s.startswith(('_', '@'))]
|
||||
|
|
@ -0,0 +1,214 @@
|
|||
"""Docstring components common to several ndimage functions."""
|
||||
from typing import Final
|
||||
|
||||
from scipy._lib import doccer
|
||||
|
||||
__all__ = ['docfiller']
|
||||
|
||||
|
||||
_input_doc = (
|
||||
"""input : array_like
|
||||
The input array.""")
|
||||
_axis_doc = (
|
||||
"""axis : int, optional
|
||||
The axis of `input` along which to calculate. Default is -1.""")
|
||||
_output_doc = (
|
||||
"""output : array or dtype, optional
|
||||
The array in which to place the output, or the dtype of the
|
||||
returned array. By default an array of the same dtype as input
|
||||
will be created.""")
|
||||
_nan_doc = (
|
||||
"""The behavior of this function with NaN elements is undefined. To control
|
||||
behavior in the presence of NaNs, consider using `vectorized_filter`.""")
|
||||
_size_foot_doc = (
|
||||
"""size : scalar or tuple, optional
|
||||
See footprint, below. Ignored if footprint is given.
|
||||
footprint : array, optional
|
||||
Either `size` or `footprint` must be defined. `size` gives
|
||||
the shape that is taken from the input array, at every element
|
||||
position, to define the input to the filter function.
|
||||
`footprint` is a boolean array that specifies (implicitly) a
|
||||
shape, but also which of the elements within this shape will get
|
||||
passed to the filter function. Thus ``size=(n,m)`` is equivalent
|
||||
to ``footprint=np.ones((n,m))``. We adjust `size` to the number
|
||||
of dimensions of the input array, so that, if the input array is
|
||||
shape (10,10,10), and `size` is 2, then the actual size used is
|
||||
(2,2,2). When `footprint` is given, `size` is ignored.""")
|
||||
_mode_reflect_doc = (
|
||||
"""mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
|
||||
The `mode` parameter determines how the input array is extended
|
||||
beyond its boundaries. Default is 'reflect'. Behavior for each valid
|
||||
value is as follows:
|
||||
|
||||
'reflect' (`d c b a | a b c d | d c b a`)
|
||||
The input is extended by reflecting about the edge of the last
|
||||
pixel. This mode is also sometimes referred to as half-sample
|
||||
symmetric.
|
||||
|
||||
'constant' (`k k k k | a b c d | k k k k`)
|
||||
The input is extended by filling all values beyond the edge with
|
||||
the same constant value, defined by the `cval` parameter.
|
||||
|
||||
'nearest' (`a a a a | a b c d | d d d d`)
|
||||
The input is extended by replicating the last pixel.
|
||||
|
||||
'mirror' (`d c b | a b c d | c b a`)
|
||||
The input is extended by reflecting about the center of the last
|
||||
pixel. This mode is also sometimes referred to as whole-sample
|
||||
symmetric.
|
||||
|
||||
'wrap' (`a b c d | a b c d | a b c d`)
|
||||
The input is extended by wrapping around to the opposite edge.
|
||||
|
||||
For consistency with the interpolation functions, the following mode
|
||||
names can also be used:
|
||||
|
||||
'grid-mirror'
|
||||
This is a synonym for 'reflect'.
|
||||
|
||||
'grid-constant'
|
||||
This is a synonym for 'constant'.
|
||||
|
||||
'grid-wrap'
|
||||
This is a synonym for 'wrap'.""")
|
||||
|
||||
_mode_interp_constant_doc = (
|
||||
"""mode : {'reflect', 'grid-mirror', 'constant', 'grid-constant', 'nearest', \
|
||||
'mirror', 'grid-wrap', 'wrap'}, optional
|
||||
The `mode` parameter determines how the input array is extended
|
||||
beyond its boundaries. Default is 'constant'. Behavior for each valid
|
||||
value is as follows (see additional plots and details on
|
||||
:ref:`boundary modes <ndimage-interpolation-modes>`):
|
||||
|
||||
'reflect' (`d c b a | a b c d | d c b a`)
|
||||
The input is extended by reflecting about the edge of the last
|
||||
pixel. This mode is also sometimes referred to as half-sample
|
||||
symmetric.
|
||||
|
||||
'grid-mirror'
|
||||
This is a synonym for 'reflect'.
|
||||
|
||||
'constant' (`k k k k | a b c d | k k k k`)
|
||||
The input is extended by filling all values beyond the edge with
|
||||
the same constant value, defined by the `cval` parameter. No
|
||||
interpolation is performed beyond the edges of the input.
|
||||
|
||||
'grid-constant' (`k k k k | a b c d | k k k k`)
|
||||
The input is extended by filling all values beyond the edge with
|
||||
the same constant value, defined by the `cval` parameter. Interpolation
|
||||
occurs for samples outside the input's extent as well.
|
||||
|
||||
'nearest' (`a a a a | a b c d | d d d d`)
|
||||
The input is extended by replicating the last pixel.
|
||||
|
||||
'mirror' (`d c b | a b c d | c b a`)
|
||||
The input is extended by reflecting about the center of the last
|
||||
pixel. This mode is also sometimes referred to as whole-sample
|
||||
symmetric.
|
||||
|
||||
'grid-wrap' (`a b c d | a b c d | a b c d`)
|
||||
The input is extended by wrapping around to the opposite edge.
|
||||
|
||||
'wrap' (`d b c d | a b c d | b c a b`)
|
||||
The input is extended by wrapping around to the opposite edge, but in a
|
||||
way such that the last point and initial point exactly overlap. In this
|
||||
case it is not well defined which sample will be chosen at the point of
|
||||
overlap.""")
|
||||
_mode_interp_mirror_doc = (
|
||||
_mode_interp_constant_doc.replace("Default is 'constant'",
|
||||
"Default is 'mirror'")
|
||||
)
|
||||
assert _mode_interp_mirror_doc != _mode_interp_constant_doc, \
|
||||
'Default not replaced'
|
||||
|
||||
_mode_multiple_doc = (
|
||||
"""mode : str or sequence, optional
|
||||
The `mode` parameter determines how the input array is extended
|
||||
when the filter overlaps a border. By passing a sequence of modes
|
||||
with length equal to the number of dimensions of the input array,
|
||||
different modes can be specified along each axis. Default value is
|
||||
'reflect'. The valid values and their behavior is as follows:
|
||||
|
||||
'reflect' (`d c b a | a b c d | d c b a`)
|
||||
The input is extended by reflecting about the edge of the last
|
||||
pixel. This mode is also sometimes referred to as half-sample
|
||||
symmetric.
|
||||
|
||||
'constant' (`k k k k | a b c d | k k k k`)
|
||||
The input is extended by filling all values beyond the edge with
|
||||
the same constant value, defined by the `cval` parameter.
|
||||
|
||||
'nearest' (`a a a a | a b c d | d d d d`)
|
||||
The input is extended by replicating the last pixel.
|
||||
|
||||
'mirror' (`d c b | a b c d | c b a`)
|
||||
The input is extended by reflecting about the center of the last
|
||||
pixel. This mode is also sometimes referred to as whole-sample
|
||||
symmetric.
|
||||
|
||||
'wrap' (`a b c d | a b c d | a b c d`)
|
||||
The input is extended by wrapping around to the opposite edge.
|
||||
|
||||
For consistency with the interpolation functions, the following mode
|
||||
names can also be used:
|
||||
|
||||
'grid-constant'
|
||||
This is a synonym for 'constant'.
|
||||
|
||||
'grid-mirror'
|
||||
This is a synonym for 'reflect'.
|
||||
|
||||
'grid-wrap'
|
||||
This is a synonym for 'wrap'.""")
|
||||
_cval_doc = (
|
||||
"""cval : scalar, optional
|
||||
Value to fill past edges of input if `mode` is 'constant'. Default
|
||||
is 0.0.""")
|
||||
_origin_doc = (
|
||||
"""origin : int, optional
|
||||
Controls the placement of the filter on the input array's pixels.
|
||||
A value of 0 (the default) centers the filter over the pixel, with
|
||||
positive values shifting the filter to the left, and negative ones
|
||||
to the right.""")
|
||||
_origin_multiple_doc = (
|
||||
"""origin : int or sequence, optional
|
||||
Controls the placement of the filter on the input array's pixels.
|
||||
A value of 0 (the default) centers the filter over the pixel, with
|
||||
positive values shifting the filter to the left, and negative ones
|
||||
to the right. By passing a sequence of origins with length equal to
|
||||
the number of dimensions of the input array, different shifts can
|
||||
be specified along each axis.""")
|
||||
_extra_arguments_doc = (
|
||||
"""extra_arguments : sequence, optional
|
||||
Sequence of extra positional arguments to pass to passed function.""")
|
||||
_extra_keywords_doc = (
|
||||
"""extra_keywords : dict, optional
|
||||
dict of extra keyword arguments to pass to passed function.""")
|
||||
_prefilter_doc = (
|
||||
"""prefilter : bool, optional
|
||||
Determines if the input array is prefiltered with `spline_filter`
|
||||
before interpolation. The default is True, which will create a
|
||||
temporary `float64` array of filtered values if ``order > 1``. If
|
||||
setting this to False, the output will be slightly blurred if
|
||||
``order > 1``, unless the input is prefiltered, i.e. it is the result
|
||||
of calling `spline_filter` on the original input.""")
|
||||
|
||||
docdict = {
|
||||
'input': _input_doc,
|
||||
'axis': _axis_doc,
|
||||
'output': _output_doc,
|
||||
'size_foot': _size_foot_doc,
|
||||
'mode_interp_constant': _mode_interp_constant_doc,
|
||||
'mode_interp_mirror': _mode_interp_mirror_doc,
|
||||
'mode_reflect': _mode_reflect_doc,
|
||||
'mode_multiple': _mode_multiple_doc,
|
||||
'cval': _cval_doc,
|
||||
'origin': _origin_doc,
|
||||
'origin_multiple': _origin_multiple_doc,
|
||||
'extra_arguments': _extra_arguments_doc,
|
||||
'extra_keywords': _extra_keywords_doc,
|
||||
'prefilter': _prefilter_doc,
|
||||
'nan': _nan_doc,
|
||||
}
|
||||
|
||||
docfiller: Final = doccer.filldoc(docdict)
|
||||
Binary file not shown.
139
venv/lib/python3.13/site-packages/scipy/ndimage/_ni_support.py
Normal file
139
venv/lib/python3.13/site-packages/scipy/ndimage/_ni_support.py
Normal file
|
|
@ -0,0 +1,139 @@
|
|||
# Copyright (C) 2003-2005 Peter J. Verveer
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions
|
||||
# are met:
|
||||
#
|
||||
# 1. Redistributions of source code must retain the above copyright
|
||||
# notice, this list of conditions and the following disclaimer.
|
||||
#
|
||||
# 2. Redistributions in binary form must reproduce the above
|
||||
# copyright notice, this list of conditions and the following
|
||||
# disclaimer in the documentation and/or other materials provided
|
||||
# with the distribution.
|
||||
#
|
||||
# 3. The name of the author may not be used to endorse or promote
|
||||
# products derived from this software without specific prior
|
||||
# written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
|
||||
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
||||
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
||||
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
||||
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
from collections.abc import Iterable
|
||||
import operator
|
||||
import warnings
|
||||
import numpy as np
|
||||
|
||||
|
||||
def _extend_mode_to_code(mode, is_filter=False):
|
||||
"""Convert an extension mode to the corresponding integer code.
|
||||
"""
|
||||
if mode == 'nearest':
|
||||
return 0
|
||||
elif mode == 'wrap':
|
||||
return 1
|
||||
elif mode in ['reflect', 'grid-mirror']:
|
||||
return 2
|
||||
elif mode == 'mirror':
|
||||
return 3
|
||||
elif mode == 'constant':
|
||||
return 4
|
||||
elif mode == 'grid-wrap' and is_filter:
|
||||
return 1
|
||||
elif mode == 'grid-wrap':
|
||||
return 5
|
||||
elif mode == 'grid-constant' and is_filter:
|
||||
return 4
|
||||
elif mode == 'grid-constant':
|
||||
return 6
|
||||
else:
|
||||
raise RuntimeError('boundary mode not supported')
|
||||
|
||||
|
||||
def _normalize_sequence(input, rank):
|
||||
"""If input is a scalar, create a sequence of length equal to the
|
||||
rank by duplicating the input. If input is a sequence,
|
||||
check if its length is equal to the length of array.
|
||||
"""
|
||||
is_str = isinstance(input, str)
|
||||
if not is_str and np.iterable(input):
|
||||
normalized = list(input)
|
||||
if len(normalized) != rank:
|
||||
err = "sequence argument must have length equal to input rank"
|
||||
raise RuntimeError(err)
|
||||
else:
|
||||
normalized = [input] * rank
|
||||
return normalized
|
||||
|
||||
|
||||
def _get_output(output, input, shape=None, complex_output=False):
|
||||
if shape is None:
|
||||
shape = input.shape
|
||||
if output is None:
|
||||
if not complex_output:
|
||||
output = np.zeros(shape, dtype=input.dtype.name)
|
||||
else:
|
||||
complex_type = np.promote_types(input.dtype, np.complex64)
|
||||
output = np.zeros(shape, dtype=complex_type)
|
||||
elif isinstance(output, type | np.dtype):
|
||||
# Classes (like `np.float32`) and dtypes are interpreted as dtype
|
||||
if complex_output and np.dtype(output).kind != 'c':
|
||||
warnings.warn("promoting specified output dtype to complex", stacklevel=3)
|
||||
output = np.promote_types(output, np.complex64)
|
||||
output = np.zeros(shape, dtype=output)
|
||||
elif isinstance(output, str):
|
||||
output = np.dtype(output)
|
||||
if complex_output and output.kind != 'c':
|
||||
raise RuntimeError("output must have complex dtype")
|
||||
elif not issubclass(output.type, np.number):
|
||||
raise RuntimeError("output must have numeric dtype")
|
||||
output = np.zeros(shape, dtype=output)
|
||||
else:
|
||||
# output was supplied as an array
|
||||
output = np.asarray(output)
|
||||
if output.shape != shape:
|
||||
raise RuntimeError("output shape not correct")
|
||||
elif complex_output and output.dtype.kind != 'c':
|
||||
raise RuntimeError("output must have complex dtype")
|
||||
return output
|
||||
|
||||
|
||||
def _check_axes(axes, ndim):
|
||||
if axes is None:
|
||||
return tuple(range(ndim))
|
||||
elif np.isscalar(axes):
|
||||
axes = (operator.index(axes),)
|
||||
elif isinstance(axes, Iterable):
|
||||
for ax in axes:
|
||||
axes = tuple(operator.index(ax) for ax in axes)
|
||||
if ax < -ndim or ax > ndim - 1:
|
||||
raise ValueError(f"specified axis: {ax} is out of range")
|
||||
axes = tuple(ax % ndim if ax < 0 else ax for ax in axes)
|
||||
else:
|
||||
message = "axes must be an integer, iterable of integers, or None"
|
||||
raise ValueError(message)
|
||||
if len(tuple(set(axes))) != len(axes):
|
||||
raise ValueError("axes must be unique")
|
||||
return axes
|
||||
|
||||
def _skip_if_dtype(arg):
|
||||
"""'array or dtype' polymorphism.
|
||||
|
||||
Return None for np.int8, dtype('float32') or 'f' etc
|
||||
arg for np.empty(3) etc
|
||||
"""
|
||||
if isinstance(arg, str):
|
||||
return None
|
||||
if type(arg) is type:
|
||||
return None if issubclass(arg, np.generic) else arg
|
||||
else:
|
||||
return None if isinstance(arg, np.dtype) else arg
|
||||
Binary file not shown.
|
|
@ -0,0 +1,84 @@
|
|||
import functools
|
||||
from scipy._lib._array_api import (
|
||||
is_cupy, is_jax, scipy_namespace_for, SCIPY_ARRAY_API
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
from ._ndimage_api import * # noqa: F403
|
||||
from . import _ndimage_api
|
||||
from . import _delegators
|
||||
__all__ = _ndimage_api.__all__
|
||||
|
||||
|
||||
MODULE_NAME = 'ndimage'
|
||||
|
||||
|
||||
def _maybe_convert_arg(arg, xp):
|
||||
"""Convert arrays/scalars hiding in the sequence `arg`."""
|
||||
if isinstance(arg, np.ndarray | np.generic):
|
||||
return xp.asarray(arg)
|
||||
elif isinstance(arg, list | tuple):
|
||||
return type(arg)(_maybe_convert_arg(x, xp) for x in arg)
|
||||
else:
|
||||
return arg
|
||||
|
||||
|
||||
# Some cupyx.scipy.ndimage functions don't exist or are incompatible with
|
||||
# their SciPy counterparts
|
||||
CUPY_BLOCKLIST = ['vectorized_filter']
|
||||
|
||||
|
||||
def delegate_xp(delegator, module_name):
|
||||
def inner(func):
|
||||
@functools.wraps(func)
|
||||
def wrapper(*args, **kwds):
|
||||
xp = delegator(*args, **kwds)
|
||||
|
||||
# try delegating to a cupyx/jax namesake
|
||||
if is_cupy(xp) and func.__name__ not in CUPY_BLOCKLIST:
|
||||
# https://github.com/cupy/cupy/issues/8336
|
||||
import importlib
|
||||
cupyx_module = importlib.import_module(f"cupyx.scipy.{module_name}")
|
||||
cupyx_func = getattr(cupyx_module, func.__name__)
|
||||
return cupyx_func(*args, **kwds)
|
||||
elif is_jax(xp) and func.__name__ == "map_coordinates":
|
||||
spx = scipy_namespace_for(xp)
|
||||
jax_module = getattr(spx, module_name)
|
||||
jax_func = getattr(jax_module, func.__name__)
|
||||
return jax_func(*args, **kwds)
|
||||
else:
|
||||
# the original function (does all np.asarray internally)
|
||||
# XXX: output arrays
|
||||
result = func(*args, **kwds)
|
||||
|
||||
if isinstance(result, np.ndarray | np.generic):
|
||||
# XXX: np.int32->np.array_0D
|
||||
return xp.asarray(result)
|
||||
elif isinstance(result, int):
|
||||
return result
|
||||
elif isinstance(result, dict):
|
||||
# value_indices: result is {np.int64(1): (array(0), array(1))} etc
|
||||
return {
|
||||
k.item(): tuple(xp.asarray(vv) for vv in v)
|
||||
for k,v in result.items()
|
||||
}
|
||||
elif result is None:
|
||||
# inplace operations
|
||||
return result
|
||||
else:
|
||||
# lists/tuples
|
||||
return _maybe_convert_arg(result, xp)
|
||||
return wrapper
|
||||
return inner
|
||||
|
||||
# ### decorate ###
|
||||
for func_name in _ndimage_api.__all__:
|
||||
bare_func = getattr(_ndimage_api, func_name)
|
||||
delegator = getattr(_delegators, func_name + "_signature")
|
||||
|
||||
f = (delegate_xp(delegator, MODULE_NAME)(bare_func)
|
||||
if SCIPY_ARRAY_API
|
||||
else bare_func)
|
||||
|
||||
# add the decorated function to the namespace, to be imported in __init__.py
|
||||
vars()[func_name] = f
|
||||
27
venv/lib/python3.13/site-packages/scipy/ndimage/filters.py
Normal file
27
venv/lib/python3.13/site-packages/scipy/ndimage/filters.py
Normal file
|
|
@ -0,0 +1,27 @@
|
|||
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
||||
# Use the `scipy.ndimage` namespace for importing the functions
|
||||
# included below.
|
||||
|
||||
from scipy._lib.deprecation import _sub_module_deprecation
|
||||
|
||||
|
||||
__all__ = [ # noqa: F822
|
||||
'correlate1d', 'convolve1d', 'gaussian_filter1d',
|
||||
'gaussian_filter', 'prewitt', 'sobel', 'generic_laplace',
|
||||
'laplace', 'gaussian_laplace', 'generic_gradient_magnitude',
|
||||
'gaussian_gradient_magnitude', 'correlate', 'convolve',
|
||||
'uniform_filter1d', 'uniform_filter', 'minimum_filter1d',
|
||||
'maximum_filter1d', 'minimum_filter', 'maximum_filter',
|
||||
'rank_filter', 'median_filter', 'percentile_filter',
|
||||
'generic_filter1d', 'generic_filter'
|
||||
]
|
||||
|
||||
|
||||
def __dir__():
|
||||
return __all__
|
||||
|
||||
|
||||
def __getattr__(name):
|
||||
return _sub_module_deprecation(sub_package='ndimage', module='filters',
|
||||
private_modules=['_filters'], all=__all__,
|
||||
attribute=name)
|
||||
21
venv/lib/python3.13/site-packages/scipy/ndimage/fourier.py
Normal file
21
venv/lib/python3.13/site-packages/scipy/ndimage/fourier.py
Normal file
|
|
@ -0,0 +1,21 @@
|
|||
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
||||
# Use the `scipy.ndimage` namespace for importing the functions
|
||||
# included below.
|
||||
|
||||
from scipy._lib.deprecation import _sub_module_deprecation
|
||||
|
||||
|
||||
__all__ = [ # noqa: F822
|
||||
'fourier_gaussian', 'fourier_uniform',
|
||||
'fourier_ellipsoid', 'fourier_shift'
|
||||
]
|
||||
|
||||
|
||||
def __dir__():
|
||||
return __all__
|
||||
|
||||
|
||||
def __getattr__(name):
|
||||
return _sub_module_deprecation(sub_package='ndimage', module='fourier',
|
||||
private_modules=['_fourier'], all=__all__,
|
||||
attribute=name)
|
||||
|
|
@ -0,0 +1,22 @@
|
|||
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
||||
# Use the `scipy.ndimage` namespace for importing the functions
|
||||
# included below.
|
||||
|
||||
from scipy._lib.deprecation import _sub_module_deprecation
|
||||
|
||||
|
||||
__all__ = [ # noqa: F822
|
||||
'spline_filter1d', 'spline_filter',
|
||||
'geometric_transform', 'map_coordinates',
|
||||
'affine_transform', 'shift', 'zoom', 'rotate',
|
||||
]
|
||||
|
||||
|
||||
def __dir__():
|
||||
return __all__
|
||||
|
||||
|
||||
def __getattr__(name):
|
||||
return _sub_module_deprecation(sub_package='ndimage', module='interpolation',
|
||||
private_modules=['_interpolation'], all=__all__,
|
||||
attribute=name)
|
||||
|
|
@ -0,0 +1,24 @@
|
|||
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
||||
# Use the `scipy.ndimage` namespace for importing the functions
|
||||
# included below.
|
||||
|
||||
from scipy._lib.deprecation import _sub_module_deprecation
|
||||
|
||||
|
||||
__all__ = [ # noqa: F822
|
||||
'label', 'find_objects', 'labeled_comprehension',
|
||||
'sum', 'mean', 'variance', 'standard_deviation',
|
||||
'minimum', 'maximum', 'median', 'minimum_position',
|
||||
'maximum_position', 'extrema', 'center_of_mass',
|
||||
'histogram', 'watershed_ift', 'sum_labels'
|
||||
]
|
||||
|
||||
|
||||
def __dir__():
|
||||
return __all__
|
||||
|
||||
|
||||
def __getattr__(name):
|
||||
return _sub_module_deprecation(sub_package='ndimage', module='measurements',
|
||||
private_modules=['_measurements'], all=__all__,
|
||||
attribute=name)
|
||||
|
|
@ -0,0 +1,27 @@
|
|||
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
||||
# Use the `scipy.ndimage` namespace for importing the functions
|
||||
# included below.
|
||||
|
||||
from scipy._lib.deprecation import _sub_module_deprecation
|
||||
|
||||
|
||||
__all__ = [ # noqa: F822
|
||||
'iterate_structure', 'generate_binary_structure',
|
||||
'binary_erosion', 'binary_dilation', 'binary_opening',
|
||||
'binary_closing', 'binary_hit_or_miss', 'binary_propagation',
|
||||
'binary_fill_holes', 'grey_erosion', 'grey_dilation',
|
||||
'grey_opening', 'grey_closing', 'morphological_gradient',
|
||||
'morphological_laplace', 'white_tophat', 'black_tophat',
|
||||
'distance_transform_bf', 'distance_transform_cdt',
|
||||
'distance_transform_edt'
|
||||
]
|
||||
|
||||
|
||||
def __dir__():
|
||||
return __all__
|
||||
|
||||
|
||||
def __getattr__(name):
|
||||
return _sub_module_deprecation(sub_package='ndimage', module='morphology',
|
||||
private_modules=['_morphology'], all=__all__,
|
||||
attribute=name)
|
||||
|
|
@ -0,0 +1,12 @@
|
|||
import numpy as np
|
||||
|
||||
# list of numarray data types
|
||||
integer_types: list[str] = [
|
||||
"int8", "uint8", "int16", "uint16",
|
||||
"int32", "uint32", "int64", "uint64"]
|
||||
|
||||
float_types: list[str] = ["float32", "float64"]
|
||||
|
||||
complex_types: list[str] = ["complex64", "complex128"]
|
||||
|
||||
types: list[str] = integer_types + float_types
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
|
@ -0,0 +1,21 @@
|
|||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 0 1 1 1
|
||||
1 1 0 0 0 1 1
|
||||
1 0 1 0 1 0 1
|
||||
0 0 0 1 0 0 0
|
||||
1 0 1 0 1 0 1
|
||||
1 1 0 0 0 1 1
|
||||
1 1 1 0 1 1 1
|
||||
1 0 1 1 1 0 1
|
||||
0 0 0 1 0 0 0
|
||||
1 0 0 1 0 0 1
|
||||
1 1 1 1 1 1 1
|
||||
1 0 0 1 0 0 1
|
||||
0 0 0 1 0 0 0
|
||||
1 0 1 1 1 0 1
|
||||
|
|
@ -0,0 +1,294 @@
|
|||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
2 2 2 2 2 2 2
|
||||
3 3 3 3 3 3 3
|
||||
4 4 4 4 4 4 4
|
||||
5 5 5 5 5 5 5
|
||||
6 6 6 6 6 6 6
|
||||
7 7 7 7 7 7 7
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 2 3 4 5 6 7
|
||||
8 9 10 11 12 13 14
|
||||
15 16 17 18 19 20 21
|
||||
22 23 24 25 26 27 28
|
||||
29 30 31 32 33 34 35
|
||||
36 37 38 39 40 41 42
|
||||
43 44 45 46 47 48 49
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 2 3 4 5 6 7
|
||||
8 1 2 3 4 5 6
|
||||
9 8 1 2 3 4 5
|
||||
10 9 8 1 2 3 4
|
||||
11 10 9 8 1 2 3
|
||||
12 11 10 9 8 1 2
|
||||
13 12 11 10 9 8 1
|
||||
1 2 3 4 5 6 7
|
||||
1 2 3 4 5 6 7
|
||||
1 2 3 4 5 6 7
|
||||
1 2 3 4 5 6 7
|
||||
1 2 3 4 5 6 7
|
||||
1 2 3 4 5 6 7
|
||||
1 2 3 4 5 6 7
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 2 1 2 1 2 1
|
||||
2 1 2 1 2 1 2
|
||||
1 2 1 2 1 2 1
|
||||
2 1 2 1 2 1 2
|
||||
1 2 1 2 1 2 1
|
||||
2 1 2 1 2 1 2
|
||||
1 2 1 2 1 2 1
|
||||
1 2 3 4 5 6 7
|
||||
2 3 4 5 6 7 8
|
||||
3 4 5 6 7 8 9
|
||||
4 5 6 7 8 9 10
|
||||
5 6 7 8 9 10 11
|
||||
6 7 8 9 10 11 12
|
||||
7 8 9 10 11 12 13
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 1 1 1 1
|
||||
1 1 1 0 2 2 2
|
||||
1 1 0 0 0 2 2
|
||||
1 0 3 0 2 0 4
|
||||
0 0 0 2 0 0 0
|
||||
5 0 2 0 6 0 7
|
||||
2 2 0 0 0 7 7
|
||||
2 2 2 0 7 7 7
|
||||
1 1 1 0 2 2 2
|
||||
1 1 0 0 0 2 2
|
||||
3 0 1 0 4 0 2
|
||||
0 0 0 1 0 0 0
|
||||
5 0 6 0 1 0 7
|
||||
5 5 0 0 0 1 1
|
||||
5 5 5 0 1 1 1
|
||||
1 1 1 0 2 2 2
|
||||
3 3 0 0 0 4 4
|
||||
5 0 6 0 7 0 8
|
||||
0 0 0 9 0 0 0
|
||||
10 0 11 0 12 0 13
|
||||
14 14 0 0 0 15 15
|
||||
16 16 16 0 17 17 17
|
||||
1 1 1 0 2 3 3
|
||||
1 1 0 0 0 3 3
|
||||
1 0 4 0 3 0 3
|
||||
0 0 0 3 0 0 0
|
||||
3 0 3 0 5 0 6
|
||||
3 3 0 0 0 6 6
|
||||
3 3 7 0 6 6 6
|
||||
1 2 3 0 4 5 6
|
||||
7 8 0 0 0 9 10
|
||||
11 0 12 0 13 0 14
|
||||
0 0 0 15 0 0 0
|
||||
16 0 17 0 18 0 19
|
||||
20 21 0 0 0 22 23
|
||||
24 25 26 0 27 28 29
|
||||
1 1 1 0 2 2 2
|
||||
1 1 0 0 0 2 2
|
||||
1 0 3 0 2 0 2
|
||||
0 0 0 2 0 0 0
|
||||
2 0 2 0 4 0 5
|
||||
2 2 0 0 0 5 5
|
||||
2 2 2 0 5 5 5
|
||||
1 1 1 0 2 2 2
|
||||
1 1 0 0 0 2 2
|
||||
1 0 3 0 4 0 2
|
||||
0 0 0 5 0 0 0
|
||||
6 0 7 0 8 0 9
|
||||
6 6 0 0 0 9 9
|
||||
6 6 6 0 9 9 9
|
||||
1 2 3 0 4 5 6
|
||||
7 1 0 0 0 4 5
|
||||
8 0 1 0 9 0 4
|
||||
0 0 0 1 0 0 0
|
||||
10 0 11 0 1 0 12
|
||||
13 10 0 0 0 1 14
|
||||
15 13 10 0 16 17 1
|
||||
1 2 3 0 4 5 6
|
||||
1 2 0 0 0 5 6
|
||||
1 0 7 0 8 0 6
|
||||
0 0 0 9 0 0 0
|
||||
10 0 11 0 12 0 13
|
||||
10 14 0 0 0 15 13
|
||||
10 14 16 0 17 15 13
|
||||
1 1 1 0 1 1 1
|
||||
1 1 0 0 0 1 1
|
||||
1 0 1 0 1 0 1
|
||||
0 0 0 1 0 0 0
|
||||
1 0 1 0 1 0 1
|
||||
1 1 0 0 0 1 1
|
||||
1 1 1 0 1 1 1
|
||||
1 1 2 0 3 3 3
|
||||
1 1 0 0 0 3 3
|
||||
1 0 1 0 4 0 3
|
||||
0 0 0 1 0 0 0
|
||||
5 0 6 0 1 0 1
|
||||
5 5 0 0 0 1 1
|
||||
5 5 5 0 7 1 1
|
||||
1 2 1 0 1 3 1
|
||||
2 1 0 0 0 1 3
|
||||
1 0 1 0 1 0 1
|
||||
0 0 0 1 0 0 0
|
||||
1 0 1 0 1 0 1
|
||||
4 1 0 0 0 1 5
|
||||
1 4 1 0 1 5 1
|
||||
1 2 3 0 4 5 6
|
||||
2 3 0 0 0 6 7
|
||||
3 0 8 0 6 0 9
|
||||
0 0 0 6 0 0 0
|
||||
10 0 6 0 11 0 12
|
||||
13 6 0 0 0 12 14
|
||||
6 15 16 0 12 14 17
|
||||
1 1 1 0 2 2 2
|
||||
1 1 0 0 0 2 2
|
||||
1 0 1 0 3 0 2
|
||||
0 0 0 1 0 0 0
|
||||
4 0 5 0 1 0 1
|
||||
4 4 0 0 0 1 1
|
||||
4 4 4 0 1 1 1
|
||||
1 0 2 2 2 0 3
|
||||
0 0 0 2 0 0 0
|
||||
4 0 0 5 0 0 5
|
||||
5 5 5 5 5 5 5
|
||||
5 0 0 5 0 0 6
|
||||
0 0 0 7 0 0 0
|
||||
8 0 7 7 7 0 9
|
||||
1 0 2 2 2 0 3
|
||||
0 0 0 2 0 0 0
|
||||
4 0 0 4 0 0 5
|
||||
4 4 4 4 4 4 4
|
||||
6 0 0 4 0 0 4
|
||||
0 0 0 7 0 0 0
|
||||
8 0 7 7 7 0 9
|
||||
1 0 2 2 2 0 3
|
||||
0 0 0 4 0 0 0
|
||||
5 0 0 6 0 0 7
|
||||
8 8 8 8 8 8 8
|
||||
9 0 0 10 0 0 11
|
||||
0 0 0 12 0 0 0
|
||||
13 0 14 14 14 0 15
|
||||
1 0 2 3 3 0 4
|
||||
0 0 0 3 0 0 0
|
||||
5 0 0 3 0 0 6
|
||||
5 5 3 3 3 6 6
|
||||
5 0 0 3 0 0 6
|
||||
0 0 0 3 0 0 0
|
||||
7 0 3 3 8 0 9
|
||||
1 0 2 3 4 0 5
|
||||
0 0 0 6 0 0 0
|
||||
7 0 0 8 0 0 9
|
||||
10 11 12 13 14 15 16
|
||||
17 0 0 18 0 0 19
|
||||
0 0 0 20 0 0 0
|
||||
21 0 22 23 24 0 25
|
||||
1 0 2 2 2 0 3
|
||||
0 0 0 2 0 0 0
|
||||
2 0 0 2 0 0 2
|
||||
2 2 2 2 2 2 2
|
||||
2 0 0 2 0 0 2
|
||||
0 0 0 2 0 0 0
|
||||
4 0 2 2 2 0 5
|
||||
1 0 2 2 2 0 3
|
||||
0 0 0 2 0 0 0
|
||||
2 0 0 2 0 0 2
|
||||
2 2 2 2 2 2 2
|
||||
2 0 0 2 0 0 2
|
||||
0 0 0 2 0 0 0
|
||||
4 0 2 2 2 0 5
|
||||
1 0 2 3 4 0 5
|
||||
0 0 0 2 0 0 0
|
||||
6 0 0 7 0 0 8
|
||||
9 6 10 11 7 12 13
|
||||
14 0 0 10 0 0 12
|
||||
0 0 0 15 0 0 0
|
||||
16 0 17 18 15 0 19
|
||||
1 0 2 3 4 0 5
|
||||
0 0 0 3 0 0 0
|
||||
6 0 0 3 0 0 7
|
||||
6 8 9 3 10 11 7
|
||||
6 0 0 3 0 0 7
|
||||
0 0 0 3 0 0 0
|
||||
12 0 13 3 14 0 15
|
||||
1 0 2 2 2 0 3
|
||||
0 0 0 2 0 0 0
|
||||
2 0 0 2 0 0 2
|
||||
2 2 2 2 2 2 2
|
||||
2 0 0 2 0 0 2
|
||||
0 0 0 2 0 0 0
|
||||
4 0 2 2 2 0 5
|
||||
1 0 2 2 3 0 4
|
||||
0 0 0 2 0 0 0
|
||||
5 0 0 2 0 0 6
|
||||
5 5 2 2 2 6 6
|
||||
5 0 0 2 0 0 6
|
||||
0 0 0 2 0 0 0
|
||||
7 0 8 2 2 0 9
|
||||
1 0 2 3 2 0 4
|
||||
0 0 0 2 0 0 0
|
||||
5 0 0 6 0 0 7
|
||||
8 5 6 9 6 7 10
|
||||
5 0 0 6 0 0 7
|
||||
0 0 0 11 0 0 0
|
||||
12 0 11 13 11 0 14
|
||||
1 0 2 3 4 0 5
|
||||
0 0 0 4 0 0 0
|
||||
6 0 0 7 0 0 8
|
||||
9 10 7 11 12 8 13
|
||||
10 0 0 12 0 0 14
|
||||
0 0 0 15 0 0 0
|
||||
16 0 15 17 18 0 19
|
||||
1 0 2 2 2 0 3
|
||||
0 0 0 2 0 0 0
|
||||
2 0 0 2 0 0 2
|
||||
2 2 2 2 2 2 2
|
||||
2 0 0 2 0 0 2
|
||||
0 0 0 2 0 0 0
|
||||
4 0 2 2 2 0 5
|
||||
|
|
@ -0,0 +1,42 @@
|
|||
0 0 1
|
||||
1 1 1
|
||||
1 0 0
|
||||
1 0 0
|
||||
1 1 1
|
||||
0 0 1
|
||||
0 0 0
|
||||
1 1 1
|
||||
0 0 0
|
||||
0 1 1
|
||||
0 1 0
|
||||
1 1 0
|
||||
0 0 0
|
||||
0 0 0
|
||||
0 0 0
|
||||
0 1 1
|
||||
1 1 1
|
||||
1 1 0
|
||||
0 1 0
|
||||
1 1 1
|
||||
0 1 0
|
||||
1 0 0
|
||||
0 1 0
|
||||
0 0 1
|
||||
0 1 0
|
||||
0 1 0
|
||||
0 1 0
|
||||
1 1 1
|
||||
1 1 1
|
||||
1 1 1
|
||||
1 1 0
|
||||
0 1 0
|
||||
0 1 1
|
||||
1 0 1
|
||||
0 1 0
|
||||
1 0 1
|
||||
0 0 1
|
||||
0 1 0
|
||||
1 0 0
|
||||
1 1 0
|
||||
1 1 1
|
||||
0 1 1
|
||||
BIN
venv/lib/python3.13/site-packages/scipy/ndimage/tests/dots.png
Normal file
BIN
venv/lib/python3.13/site-packages/scipy/ndimage/tests/dots.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 2.1 KiB |
|
|
@ -0,0 +1,102 @@
|
|||
import numpy as np
|
||||
from scipy._lib._array_api import xp_assert_close
|
||||
|
||||
from scipy import ndimage
|
||||
from scipy.ndimage import _ctest
|
||||
from scipy.ndimage import _cytest
|
||||
from scipy._lib._ccallback import LowLevelCallable
|
||||
|
||||
FILTER1D_FUNCTIONS = [
|
||||
lambda filter_size: _ctest.filter1d(filter_size),
|
||||
lambda filter_size: _cytest.filter1d(filter_size, with_signature=False),
|
||||
lambda filter_size: LowLevelCallable(
|
||||
_cytest.filter1d(filter_size, with_signature=True)
|
||||
),
|
||||
lambda filter_size: LowLevelCallable.from_cython(
|
||||
_cytest, "_filter1d",
|
||||
_cytest.filter1d_capsule(filter_size),
|
||||
),
|
||||
]
|
||||
|
||||
FILTER2D_FUNCTIONS = [
|
||||
lambda weights: _ctest.filter2d(weights),
|
||||
lambda weights: _cytest.filter2d(weights, with_signature=False),
|
||||
lambda weights: LowLevelCallable(_cytest.filter2d(weights, with_signature=True)),
|
||||
lambda weights: LowLevelCallable.from_cython(_cytest,
|
||||
"_filter2d",
|
||||
_cytest.filter2d_capsule(weights),),
|
||||
]
|
||||
|
||||
TRANSFORM_FUNCTIONS = [
|
||||
lambda shift: _ctest.transform(shift),
|
||||
lambda shift: _cytest.transform(shift, with_signature=False),
|
||||
lambda shift: LowLevelCallable(_cytest.transform(shift, with_signature=True)),
|
||||
lambda shift: LowLevelCallable.from_cython(_cytest,
|
||||
"_transform",
|
||||
_cytest.transform_capsule(shift),),
|
||||
]
|
||||
|
||||
|
||||
def test_generic_filter():
|
||||
def filter2d(footprint_elements, weights):
|
||||
return (weights*footprint_elements).sum()
|
||||
|
||||
def check(j):
|
||||
func = FILTER2D_FUNCTIONS[j]
|
||||
|
||||
im = np.ones((20, 20))
|
||||
im[:10,:10] = 0
|
||||
footprint = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
|
||||
footprint_size = np.count_nonzero(footprint)
|
||||
weights = np.ones(footprint_size)/footprint_size
|
||||
|
||||
res = ndimage.generic_filter(im, func(weights),
|
||||
footprint=footprint)
|
||||
std = ndimage.generic_filter(im, filter2d, footprint=footprint,
|
||||
extra_arguments=(weights,))
|
||||
xp_assert_close(res, std, err_msg=f"#{j} failed")
|
||||
|
||||
for j, func in enumerate(FILTER2D_FUNCTIONS):
|
||||
check(j)
|
||||
|
||||
|
||||
def test_generic_filter1d():
|
||||
def filter1d(input_line, output_line, filter_size):
|
||||
for i in range(output_line.size):
|
||||
output_line[i] = 0
|
||||
for j in range(filter_size):
|
||||
output_line[i] += input_line[i+j]
|
||||
output_line /= filter_size
|
||||
|
||||
def check(j):
|
||||
func = FILTER1D_FUNCTIONS[j]
|
||||
|
||||
im = np.tile(np.hstack((np.zeros(10), np.ones(10))), (10, 1))
|
||||
filter_size = 3
|
||||
|
||||
res = ndimage.generic_filter1d(im, func(filter_size),
|
||||
filter_size)
|
||||
std = ndimage.generic_filter1d(im, filter1d, filter_size,
|
||||
extra_arguments=(filter_size,))
|
||||
xp_assert_close(res, std, err_msg=f"#{j} failed")
|
||||
|
||||
for j, func in enumerate(FILTER1D_FUNCTIONS):
|
||||
check(j)
|
||||
|
||||
|
||||
def test_geometric_transform():
|
||||
def transform(output_coordinates, shift):
|
||||
return output_coordinates[0] - shift, output_coordinates[1] - shift
|
||||
|
||||
def check(j):
|
||||
func = TRANSFORM_FUNCTIONS[j]
|
||||
|
||||
im = np.arange(12).reshape(4, 3).astype(np.float64)
|
||||
shift = 0.5
|
||||
|
||||
res = ndimage.geometric_transform(im, func(shift))
|
||||
std = ndimage.geometric_transform(im, transform, extra_arguments=(shift,))
|
||||
xp_assert_close(res, std, err_msg=f"#{j} failed")
|
||||
|
||||
for j, func in enumerate(TRANSFORM_FUNCTIONS):
|
||||
check(j)
|
||||
|
|
@ -0,0 +1,67 @@
|
|||
""" Testing data types for ndimage calls
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
from scipy._lib._array_api import assert_array_almost_equal
|
||||
import pytest
|
||||
|
||||
from scipy import ndimage
|
||||
|
||||
|
||||
def test_map_coordinates_dts():
|
||||
# check that ndimage accepts different data types for interpolation
|
||||
data = np.array([[4, 1, 3, 2],
|
||||
[7, 6, 8, 5],
|
||||
[3, 5, 3, 6]])
|
||||
shifted_data = np.array([[0, 0, 0, 0],
|
||||
[0, 4, 1, 3],
|
||||
[0, 7, 6, 8]])
|
||||
idx = np.indices(data.shape)
|
||||
dts = (np.uint8, np.uint16, np.uint32, np.uint64,
|
||||
np.int8, np.int16, np.int32, np.int64,
|
||||
np.intp, np.uintp, np.float32, np.float64)
|
||||
for order in range(0, 6):
|
||||
for data_dt in dts:
|
||||
these_data = data.astype(data_dt)
|
||||
for coord_dt in dts:
|
||||
# affine mapping
|
||||
mat = np.eye(2, dtype=coord_dt)
|
||||
off = np.zeros((2,), dtype=coord_dt)
|
||||
out = ndimage.affine_transform(these_data, mat, off)
|
||||
assert_array_almost_equal(these_data, out)
|
||||
# map coordinates
|
||||
coords_m1 = idx.astype(coord_dt) - 1
|
||||
coords_p10 = idx.astype(coord_dt) + 10
|
||||
out = ndimage.map_coordinates(these_data, coords_m1, order=order)
|
||||
assert_array_almost_equal(out, shifted_data)
|
||||
# check constant fill works
|
||||
out = ndimage.map_coordinates(these_data, coords_p10, order=order)
|
||||
assert_array_almost_equal(out, np.zeros((3,4)))
|
||||
# check shift and zoom
|
||||
out = ndimage.shift(these_data, 1)
|
||||
assert_array_almost_equal(out, shifted_data)
|
||||
out = ndimage.zoom(these_data, 1)
|
||||
assert_array_almost_equal(these_data, out)
|
||||
|
||||
|
||||
@pytest.mark.xfail(True, reason="Broken on many platforms")
|
||||
def test_uint64_max():
|
||||
# Test interpolation respects uint64 max. Reported to fail at least on
|
||||
# win32 (due to the 32 bit visual C compiler using signed int64 when
|
||||
# converting between uint64 to double) and Debian on s390x.
|
||||
# Interpolation is always done in double precision floating point, so
|
||||
# we use the largest uint64 value for which int(float(big)) still fits
|
||||
# in a uint64.
|
||||
# This test was last enabled on macOS only, and there it started failing
|
||||
# on arm64 as well (see gh-19117).
|
||||
big = 2**64 - 1025
|
||||
arr = np.array([big, big, big], dtype=np.uint64)
|
||||
# Tests geometric transform (map_coordinates, affine_transform)
|
||||
inds = np.indices(arr.shape) - 0.1
|
||||
x = ndimage.map_coordinates(arr, inds)
|
||||
assert x[1] == int(float(big))
|
||||
assert x[2] == int(float(big))
|
||||
# Tests zoom / shift
|
||||
x = ndimage.shift(arr, 0.1)
|
||||
assert x[1] == int(float(big))
|
||||
assert x[2] == int(float(big))
|
||||
File diff suppressed because it is too large
Load diff
|
|
@ -0,0 +1,187 @@
|
|||
import math
|
||||
import numpy as np
|
||||
|
||||
from scipy._lib._array_api import (
|
||||
xp_assert_equal,
|
||||
assert_array_almost_equal,
|
||||
assert_almost_equal,
|
||||
is_cupy,
|
||||
)
|
||||
|
||||
import pytest
|
||||
|
||||
from scipy import ndimage
|
||||
|
||||
skip_xp_backends = pytest.mark.skip_xp_backends
|
||||
pytestmark = [skip_xp_backends(cpu_only=True, exceptions=['cupy', 'jax.numpy'])]
|
||||
|
||||
|
||||
@skip_xp_backends('jax.numpy', reason="jax-ml/jax#23827")
|
||||
class TestNdimageFourier:
|
||||
|
||||
@pytest.mark.parametrize('shape', [(32, 16), (31, 15), (1, 10)])
|
||||
@pytest.mark.parametrize('dtype, dec', [("float32", 6), ("float64", 14)])
|
||||
def test_fourier_gaussian_real01(self, shape, dtype, dec, xp):
|
||||
fft = getattr(xp, 'fft')
|
||||
|
||||
a = np.zeros(shape, dtype=dtype)
|
||||
a[0, 0] = 1.0
|
||||
a = xp.asarray(a)
|
||||
|
||||
a = fft.rfft(a, n=shape[0], axis=0)
|
||||
a = fft.fft(a, n=shape[1], axis=1)
|
||||
a = ndimage.fourier_gaussian(a, [5.0, 2.5], shape[0], 0)
|
||||
a = fft.ifft(a, n=shape[1], axis=1)
|
||||
a = fft.irfft(a, n=shape[0], axis=0)
|
||||
assert_almost_equal(ndimage.sum(a), xp.asarray(1), decimal=dec,
|
||||
check_0d=False)
|
||||
|
||||
@pytest.mark.parametrize('shape', [(32, 16), (31, 15)])
|
||||
@pytest.mark.parametrize('dtype, dec', [("complex64", 6), ("complex128", 14)])
|
||||
def test_fourier_gaussian_complex01(self, shape, dtype, dec, xp):
|
||||
fft = getattr(xp, 'fft')
|
||||
|
||||
a = np.zeros(shape, dtype=dtype)
|
||||
a[0, 0] = 1.0
|
||||
a = xp.asarray(a)
|
||||
|
||||
a = fft.fft(a, n=shape[0], axis=0)
|
||||
a = fft.fft(a, n=shape[1], axis=1)
|
||||
a = ndimage.fourier_gaussian(a, [5.0, 2.5], -1, 0)
|
||||
a = fft.ifft(a, n=shape[1], axis=1)
|
||||
a = fft.ifft(a, n=shape[0], axis=0)
|
||||
assert_almost_equal(ndimage.sum(xp.real(a)), xp.asarray(1.0), decimal=dec,
|
||||
check_0d=False)
|
||||
|
||||
@pytest.mark.parametrize('shape', [(32, 16), (31, 15), (1, 10)])
|
||||
@pytest.mark.parametrize('dtype, dec', [("float32", 6), ("float64", 14)])
|
||||
def test_fourier_uniform_real01(self, shape, dtype, dec, xp):
|
||||
fft = getattr(xp, 'fft')
|
||||
|
||||
a = np.zeros(shape, dtype=dtype)
|
||||
a[0, 0] = 1.0
|
||||
a = xp.asarray(a)
|
||||
|
||||
a = fft.rfft(a, n=shape[0], axis=0)
|
||||
a = fft.fft(a, n=shape[1], axis=1)
|
||||
a = ndimage.fourier_uniform(a, [5.0, 2.5], shape[0], 0)
|
||||
a = fft.ifft(a, n=shape[1], axis=1)
|
||||
a = fft.irfft(a, n=shape[0], axis=0)
|
||||
assert_almost_equal(ndimage.sum(a), xp.asarray(1.0), decimal=dec,
|
||||
check_0d=False)
|
||||
|
||||
@pytest.mark.parametrize('shape', [(32, 16), (31, 15)])
|
||||
@pytest.mark.parametrize('dtype, dec', [("complex64", 6), ("complex128", 14)])
|
||||
def test_fourier_uniform_complex01(self, shape, dtype, dec, xp):
|
||||
fft = getattr(xp, 'fft')
|
||||
|
||||
a = np.zeros(shape, dtype=dtype)
|
||||
a[0, 0] = 1.0
|
||||
a = xp.asarray(a)
|
||||
|
||||
a = fft.fft(a, n=shape[0], axis=0)
|
||||
a = fft.fft(a, n=shape[1], axis=1)
|
||||
a = ndimage.fourier_uniform(a, [5.0, 2.5], -1, 0)
|
||||
a = fft.ifft(a, n=shape[1], axis=1)
|
||||
a = fft.ifft(a, n=shape[0], axis=0)
|
||||
assert_almost_equal(ndimage.sum(xp.real(a)), xp.asarray(1.0), decimal=dec,
|
||||
check_0d=False)
|
||||
|
||||
@pytest.mark.parametrize('shape', [(32, 16), (31, 15)])
|
||||
@pytest.mark.parametrize('dtype, dec', [("float32", 4), ("float64", 11)])
|
||||
def test_fourier_shift_real01(self, shape, dtype, dec, xp):
|
||||
fft = getattr(xp, 'fft')
|
||||
|
||||
expected = np.arange(shape[0] * shape[1], dtype=dtype).reshape(shape)
|
||||
expected = xp.asarray(expected)
|
||||
|
||||
a = fft.rfft(expected, n=shape[0], axis=0)
|
||||
a = fft.fft(a, n=shape[1], axis=1)
|
||||
a = ndimage.fourier_shift(a, [1, 1], shape[0], 0)
|
||||
a = fft.ifft(a, n=shape[1], axis=1)
|
||||
a = fft.irfft(a, n=shape[0], axis=0)
|
||||
assert_array_almost_equal(a[1:, 1:], expected[:-1, :-1], decimal=dec)
|
||||
|
||||
@pytest.mark.parametrize('shape', [(32, 16), (31, 15)])
|
||||
@pytest.mark.parametrize('dtype, dec', [("complex64", 4), ("complex128", 11)])
|
||||
def test_fourier_shift_complex01(self, shape, dtype, dec, xp):
|
||||
fft = getattr(xp, 'fft')
|
||||
|
||||
expected = np.arange(shape[0] * shape[1], dtype=dtype).reshape(shape)
|
||||
expected = xp.asarray(expected)
|
||||
|
||||
a = fft.fft(expected, n=shape[0], axis=0)
|
||||
a = fft.fft(a, n=shape[1], axis=1)
|
||||
a = ndimage.fourier_shift(a, [1, 1], -1, 0)
|
||||
a = fft.ifft(a, n=shape[1], axis=1)
|
||||
a = fft.ifft(a, n=shape[0], axis=0)
|
||||
assert_array_almost_equal(xp.real(a)[1:, 1:], expected[:-1, :-1], decimal=dec)
|
||||
assert_array_almost_equal(xp.imag(a), xp.zeros(shape), decimal=dec)
|
||||
|
||||
@pytest.mark.parametrize('shape', [(32, 16), (31, 15), (1, 10)])
|
||||
@pytest.mark.parametrize('dtype, dec', [("float32", 5), ("float64", 14)])
|
||||
def test_fourier_ellipsoid_real01(self, shape, dtype, dec, xp):
|
||||
fft = getattr(xp, 'fft')
|
||||
|
||||
a = np.zeros(shape, dtype=dtype)
|
||||
a[0, 0] = 1.0
|
||||
a = xp.asarray(a)
|
||||
|
||||
a = fft.rfft(a, n=shape[0], axis=0)
|
||||
a = fft.fft(a, n=shape[1], axis=1)
|
||||
a = ndimage.fourier_ellipsoid(a, [5.0, 2.5], shape[0], 0)
|
||||
a = fft.ifft(a, n=shape[1], axis=1)
|
||||
a = fft.irfft(a, n=shape[0], axis=0)
|
||||
assert_almost_equal(ndimage.sum(a), xp.asarray(1.0), decimal=dec,
|
||||
check_0d=False)
|
||||
|
||||
@pytest.mark.parametrize('shape', [(32, 16), (31, 15)])
|
||||
@pytest.mark.parametrize('dtype, dec', [("complex64", 5), ("complex128", 14)])
|
||||
def test_fourier_ellipsoid_complex01(self, shape, dtype, dec, xp):
|
||||
fft = getattr(xp, 'fft')
|
||||
|
||||
a = np.zeros(shape, dtype=dtype)
|
||||
a[0, 0] = 1.0
|
||||
a = xp.asarray(a)
|
||||
|
||||
a = fft.fft(a, n=shape[0], axis=0)
|
||||
a = fft.fft(a, n=shape[1], axis=1)
|
||||
a = ndimage.fourier_ellipsoid(a, [5.0, 2.5], -1, 0)
|
||||
a = fft.ifft(a, n=shape[1], axis=1)
|
||||
a = fft.ifft(a, n=shape[0], axis=0)
|
||||
assert_almost_equal(ndimage.sum(xp.real(a)), xp.asarray(1.0), decimal=dec,
|
||||
check_0d=False)
|
||||
|
||||
def test_fourier_ellipsoid_unimplemented_ndim(self, xp):
|
||||
# arrays with ndim > 3 raise NotImplementedError
|
||||
x = xp.ones((4, 6, 8, 10), dtype=xp.complex128)
|
||||
with pytest.raises(NotImplementedError):
|
||||
ndimage.fourier_ellipsoid(x, 3)
|
||||
|
||||
def test_fourier_ellipsoid_1d_complex(self, xp):
|
||||
# expected result of 1d ellipsoid is the same as for fourier_uniform
|
||||
for shape in [(32, ), (31, )]:
|
||||
for type_, dec in zip([xp.complex64, xp.complex128], [5, 14]):
|
||||
x = xp.ones(shape, dtype=type_)
|
||||
a = ndimage.fourier_ellipsoid(x, 5, -1, 0)
|
||||
b = ndimage.fourier_uniform(x, 5, -1, 0)
|
||||
assert_array_almost_equal(a, b, decimal=dec)
|
||||
|
||||
@pytest.mark.parametrize('shape', [(0, ), (0, 10), (10, 0)])
|
||||
@pytest.mark.parametrize('dtype', ["float32", "float64",
|
||||
"complex64", "complex128"])
|
||||
@pytest.mark.parametrize('test_func',
|
||||
[ndimage.fourier_ellipsoid,
|
||||
ndimage.fourier_gaussian,
|
||||
ndimage.fourier_uniform])
|
||||
def test_fourier_zero_length_dims(self, shape, dtype, test_func, xp):
|
||||
if (
|
||||
is_cupy(xp)
|
||||
and test_func.__name__ == "fourier_ellipsoid"
|
||||
and math.prod(shape) == 0
|
||||
):
|
||||
pytest.xfail("CuPy's fourier_ellipsoid does not accept size==0 arrays")
|
||||
dtype = getattr(xp, dtype)
|
||||
a = xp.ones(shape, dtype=dtype)
|
||||
b = test_func(a, 3)
|
||||
xp_assert_equal(a, b)
|
||||
File diff suppressed because it is too large
Load diff
File diff suppressed because it is too large
Load diff
File diff suppressed because it is too large
Load diff
|
|
@ -0,0 +1,78 @@
|
|||
import pytest
|
||||
|
||||
import numpy as np
|
||||
from .._ni_support import _get_output
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
'dtype',
|
||||
[
|
||||
# String specifiers
|
||||
'f4', 'float32', 'complex64', 'complex128',
|
||||
# Type and dtype specifiers
|
||||
np.float32, float, np.dtype('f4'),
|
||||
# Derive from input
|
||||
None,
|
||||
],
|
||||
)
|
||||
def test_get_output_basic(dtype):
|
||||
shape = (2, 3)
|
||||
|
||||
input_ = np.zeros(shape, dtype='float32')
|
||||
|
||||
# For None, derive dtype from input
|
||||
expected_dtype = 'float32' if dtype is None else dtype
|
||||
|
||||
# Output is dtype-specifier, retrieve shape from input
|
||||
result = _get_output(dtype, input_)
|
||||
assert result.shape == shape
|
||||
assert result.dtype == np.dtype(expected_dtype)
|
||||
|
||||
# Output is dtype specifier, with explicit shape, overriding input
|
||||
result = _get_output(dtype, input_, shape=(3, 2))
|
||||
assert result.shape == (3, 2)
|
||||
assert result.dtype == np.dtype(expected_dtype)
|
||||
|
||||
# Output is pre-allocated array, return directly
|
||||
output = np.zeros(shape, dtype=dtype)
|
||||
result = _get_output(output, input_)
|
||||
assert result is output
|
||||
|
||||
|
||||
@pytest.mark.thread_unsafe
|
||||
def test_get_output_complex():
|
||||
shape = (2, 3)
|
||||
|
||||
input_ = np.zeros(shape)
|
||||
|
||||
# None, promote input type to complex
|
||||
result = _get_output(None, input_, complex_output=True)
|
||||
assert result.shape == shape
|
||||
assert result.dtype == np.dtype('complex128')
|
||||
|
||||
# Explicit type, promote type to complex
|
||||
with pytest.warns(UserWarning, match='promoting specified output dtype to complex'):
|
||||
result = _get_output(float, input_, complex_output=True)
|
||||
assert result.shape == shape
|
||||
assert result.dtype == np.dtype('complex128')
|
||||
|
||||
# String specifier, simply verify complex output
|
||||
result = _get_output('complex64', input_, complex_output=True)
|
||||
assert result.shape == shape
|
||||
assert result.dtype == np.dtype('complex64')
|
||||
|
||||
|
||||
def test_get_output_error_cases():
|
||||
input_ = np.zeros((2, 3), 'float32')
|
||||
|
||||
# Two separate paths can raise the same error
|
||||
with pytest.raises(RuntimeError, match='output must have complex dtype'):
|
||||
_get_output('float32', input_, complex_output=True)
|
||||
with pytest.raises(RuntimeError, match='output must have complex dtype'):
|
||||
_get_output(np.zeros((2, 3)), input_, complex_output=True)
|
||||
|
||||
with pytest.raises(RuntimeError, match='output must have numeric dtype'):
|
||||
_get_output('void', input_)
|
||||
|
||||
with pytest.raises(RuntimeError, match='shape not correct'):
|
||||
_get_output(np.zeros((3, 2)), input_)
|
||||
|
|
@ -0,0 +1,70 @@
|
|||
"""Tests for spline filtering."""
|
||||
import pytest
|
||||
|
||||
import numpy as np
|
||||
from scipy._lib._array_api import assert_almost_equal
|
||||
|
||||
from scipy import ndimage
|
||||
|
||||
skip_xp_backends = pytest.mark.skip_xp_backends
|
||||
pytestmark = [skip_xp_backends(cpu_only=True, exceptions=['cupy', 'jax.numpy'])]
|
||||
|
||||
|
||||
def get_spline_knot_values(order):
|
||||
"""Knot values to the right of a B-spline's center."""
|
||||
knot_values = {0: [1],
|
||||
1: [1],
|
||||
2: [6, 1],
|
||||
3: [4, 1],
|
||||
4: [230, 76, 1],
|
||||
5: [66, 26, 1]}
|
||||
|
||||
return knot_values[order]
|
||||
|
||||
|
||||
def make_spline_knot_matrix(xp, n, order, mode='mirror'):
|
||||
"""Matrix to invert to find the spline coefficients."""
|
||||
knot_values = get_spline_knot_values(order)
|
||||
|
||||
# NB: do computations with numpy, convert to xp as the last step only
|
||||
|
||||
matrix = np.zeros((n, n))
|
||||
for diag, knot_value in enumerate(knot_values):
|
||||
indices = np.arange(diag, n)
|
||||
if diag == 0:
|
||||
matrix[indices, indices] = knot_value
|
||||
else:
|
||||
matrix[indices, indices - diag] = knot_value
|
||||
matrix[indices - diag, indices] = knot_value
|
||||
|
||||
knot_values_sum = knot_values[0] + 2 * sum(knot_values[1:])
|
||||
|
||||
if mode == 'mirror':
|
||||
start, step = 1, 1
|
||||
elif mode == 'reflect':
|
||||
start, step = 0, 1
|
||||
elif mode == 'grid-wrap':
|
||||
start, step = -1, -1
|
||||
else:
|
||||
raise ValueError(f'unsupported mode {mode}')
|
||||
|
||||
for row in range(len(knot_values) - 1):
|
||||
for idx, knot_value in enumerate(knot_values[row + 1:]):
|
||||
matrix[row, start + step*idx] += knot_value
|
||||
matrix[-row - 1, -start - 1 - step*idx] += knot_value
|
||||
|
||||
return xp.asarray(matrix / knot_values_sum)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('order', [0, 1, 2, 3, 4, 5])
|
||||
@pytest.mark.parametrize('mode', ['mirror', 'grid-wrap', 'reflect'])
|
||||
def test_spline_filter_vs_matrix_solution(order, mode, xp):
|
||||
n = 100
|
||||
eye = xp.eye(n, dtype=xp.float64)
|
||||
spline_filter_axis_0 = ndimage.spline_filter1d(eye, axis=0, order=order,
|
||||
mode=mode)
|
||||
spline_filter_axis_1 = ndimage.spline_filter1d(eye, axis=1, order=order,
|
||||
mode=mode)
|
||||
matrix = make_spline_knot_matrix(xp, n, order, mode=mode)
|
||||
assert_almost_equal(eye, spline_filter_axis_0 @ matrix)
|
||||
assert_almost_equal(eye, spline_filter_axis_1 @ matrix.T)
|
||||
Loading…
Add table
Add a link
Reference in a new issue