up follow livre

This commit is contained in:
Tykayn 2025-08-30 18:14:14 +02:00 committed by tykayn
parent b4b4398bb0
commit 3a7a3849ae
12242 changed files with 2564461 additions and 6914 deletions

View file

@ -0,0 +1,311 @@
"""Helpers to utilize existing stft / istft tests for testing `ShortTimeFFT`.
This module provides the functions stft_compare() and istft_compare(), which,
compares the output between the existing (i)stft() and the shortTimeFFT based
_(i)stft_wrapper() implementations in this module.
For testing add the following imports to the file ``tests/test_spectral.py``::
from ._scipy_spectral_test_shim import stft_compare as stft
from ._scipy_spectral_test_shim import istft_compare as istft
and remove the existing imports of stft and istft.
The idea of these wrappers is not to provide a backward-compatible interface
but to demonstrate that the ShortTimeFFT implementation is at least as capable
as the existing one and delivers comparable results. Furthermore, the
wrappers highlight the different philosophies of the implementations,
especially in the border handling.
"""
import platform
from typing import cast, Literal
import numpy as np
from numpy.testing import assert_allclose
from scipy.signal import ShortTimeFFT
from scipy.signal import get_window, stft, istft
from scipy.signal._arraytools import const_ext, even_ext, odd_ext, zero_ext
from scipy.signal._short_time_fft import FFT_MODE_TYPE
from scipy.signal._spectral_py import _triage_segments
def _stft_wrapper(x, fs=1.0, window='hann', nperseg=256, noverlap=None,
nfft=None, detrend=False, return_onesided=True,
boundary='zeros', padded=True, axis=-1, scaling='spectrum'):
"""Wrapper for the SciPy `stft()` function based on `ShortTimeFFT` for
unit testing.
Handling the boundary and padding is where `ShortTimeFFT` and `stft()`
differ in behavior. Parts of `_spectral_helper()` were copied to mimic
the` stft()` behavior.
This function is meant to be solely used by `stft_compare()`.
"""
if scaling not in ('psd', 'spectrum'): # same errors as in original stft:
raise ValueError(f"Parameter {scaling=} not in ['spectrum', 'psd']!")
# The following lines are taken from the original _spectral_helper():
boundary_funcs = {'even': even_ext,
'odd': odd_ext,
'constant': const_ext,
'zeros': zero_ext,
None: None}
if boundary not in boundary_funcs:
raise ValueError(f"Unknown boundary option '{boundary}', must be one" +
f" of: {list(boundary_funcs.keys())}")
if x.size == 0:
return np.empty(x.shape), np.empty(x.shape), np.empty(x.shape)
if nperseg is not None: # if specified by user
nperseg = int(nperseg)
if nperseg < 1:
raise ValueError('nperseg must be a positive integer')
# parse window; if array like, then set nperseg = win.shape
win, nperseg = _triage_segments(window, nperseg,
input_length=x.shape[axis])
if nfft is None:
nfft = nperseg
elif nfft < nperseg:
raise ValueError('nfft must be greater than or equal to nperseg.')
else:
nfft = int(nfft)
if noverlap is None:
noverlap = nperseg//2
else:
noverlap = int(noverlap)
if noverlap >= nperseg:
raise ValueError('noverlap must be less than nperseg.')
nstep = nperseg - noverlap
n = x.shape[axis]
# Padding occurs after boundary extension, so that the extended signal ends
# in zeros, instead of introducing an impulse at the end.
# I.e. if x = [..., 3, 2]
# extend then pad -> [..., 3, 2, 2, 3, 0, 0, 0]
# pad then extend -> [..., 3, 2, 0, 0, 0, 2, 3]
if boundary is not None:
ext_func = boundary_funcs[boundary]
# Extend by nperseg//2 in front and back:
x = ext_func(x, nperseg//2, axis=axis)
if padded:
# Pad to integer number of windowed segments
# I.e make x.shape[-1] = nperseg + (nseg-1)*nstep, with integer nseg
x = np.moveaxis(x, axis, -1)
# This is an edge case where shortTimeFFT returns one more time slice
# than the Scipy stft() shorten to remove last time slice:
if n % 2 == 1 and nperseg % 2 == 1 and noverlap % 2 == 1:
x = x[..., : -1]
nadd = (-(x.shape[-1]-nperseg) % nstep) % nperseg
zeros_shape = list(x.shape[:-1]) + [nadd]
x = np.concatenate((x, np.zeros(zeros_shape)), axis=-1)
x = np.moveaxis(x, -1, axis)
# ... end original _spectral_helper() code.
scale_to = {'spectrum': 'magnitude', 'psd': 'psd'}[scaling]
if np.iscomplexobj(x) and return_onesided:
return_onesided = False
# using cast() to make mypy happy:
fft_mode = cast(FFT_MODE_TYPE, 'onesided' if return_onesided else 'twosided')
ST = ShortTimeFFT(win, nstep, fs, fft_mode=fft_mode, mfft=nfft,
scale_to=scale_to, phase_shift=None)
k_off = nperseg // 2
p0 = 0 # ST.lower_border_end[1] + 1
nn = x.shape[axis] if padded else n+k_off+1
# number of frames akin to legacy stft computation
p1 = (x.shape[axis] - nperseg) // nstep + 1
detr = None if detrend is False else detrend
Sxx = ST.stft_detrend(x, detr, p0, p1, k_offset=k_off, axis=axis)
t = ST.t(nn, 0, p1 - p0, k_offset=0 if boundary is not None else k_off)
if x.dtype in (np.float32, np.complex64):
Sxx = Sxx.astype(np.complex64)
return ST.f, t, Sxx
def _istft_wrapper(Zxx, fs=1.0, window='hann', nperseg=None, noverlap=None,
nfft=None, input_onesided=True, boundary=True, time_axis=-1,
freq_axis=-2, scaling='spectrum') -> \
tuple[np.ndarray, np.ndarray, tuple[int, int]]:
"""Wrapper for the SciPy `istft()` function based on `ShortTimeFFT` for
unit testing.
Note that only option handling is implemented as far as to handle the unit
tests. E.g., the case ``nperseg=None`` is not handled.
This function is meant to be solely used by `istft_compare()`.
"""
# *** Lines are taken from _spectral_py.istft() ***:
if Zxx.ndim < 2:
raise ValueError('Input stft must be at least 2d!')
if freq_axis == time_axis:
raise ValueError('Must specify differing time and frequency axes!')
nseg = Zxx.shape[time_axis]
if input_onesided:
# Assume even segment length
n_default = 2*(Zxx.shape[freq_axis] - 1)
else:
n_default = Zxx.shape[freq_axis]
# Check windowing parameters
if nperseg is None:
nperseg = n_default
else:
nperseg = int(nperseg)
if nperseg < 1:
raise ValueError('nperseg must be a positive integer')
if nfft is None:
if input_onesided and (nperseg == n_default + 1):
# Odd nperseg, no FFT padding
nfft = nperseg
else:
nfft = n_default
elif nfft < nperseg:
raise ValueError('nfft must be greater than or equal to nperseg.')
else:
nfft = int(nfft)
if noverlap is None:
noverlap = nperseg//2
else:
noverlap = int(noverlap)
if noverlap >= nperseg:
raise ValueError('noverlap must be less than nperseg.')
nstep = nperseg - noverlap
# Get window as array
if isinstance(window, str) or type(window) is tuple:
win = get_window(window, nperseg)
else:
win = np.asarray(window)
if len(win.shape) != 1:
raise ValueError('window must be 1-D')
if win.shape[0] != nperseg:
raise ValueError(f'window must have length of {nperseg}')
outputlength = nperseg + (nseg-1)*nstep
# *** End block of: Taken from _spectral_py.istft() ***
# Using cast() to make mypy happy:
fft_mode = cast(FFT_MODE_TYPE, 'onesided' if input_onesided else 'twosided')
scale_to = cast(Literal['magnitude', 'psd'],
{'spectrum': 'magnitude', 'psd': 'psd'}[scaling])
ST = ShortTimeFFT(win, nstep, fs, fft_mode=fft_mode, mfft=nfft,
scale_to=scale_to, phase_shift=None)
if boundary:
j = nperseg if nperseg % 2 == 0 else nperseg - 1
k0 = ST.k_min + nperseg // 2
k1 = outputlength - j + k0
else:
raise NotImplementedError("boundary=False does not make sense with" +
"ShortTimeFFT.istft()!")
x = ST.istft(Zxx, k0=k0, k1=k1, f_axis=freq_axis, t_axis=time_axis)
t = np.arange(k1 - k0) * ST.T
k_hi = ST.upper_border_begin(k1 - k0)[0]
# using cast() to make mypy happy:
return t, x, (ST.lower_border_end[0], k_hi)
def stft_compare(x, fs=1.0, window='hann', nperseg=256, noverlap=None,
nfft=None, detrend=False, return_onesided=True,
boundary='zeros', padded=True, axis=-1, scaling='spectrum'):
"""Assert that the results from the existing `stft()` and `_stft_wrapper()`
are close to each other.
For comparing the STFT values an absolute tolerance of the floating point
resolution was added to circumvent problems with the following tests:
* For float32 the tolerances are much higher in
TestSTFT.test_roundtrip_float32()).
* The TestSTFT.test_roundtrip_scaling() has a high relative deviation.
Interestingly this did not appear in Scipy 1.9.1 but only in the current
development version.
"""
kw = dict(x=x, fs=fs, window=window, nperseg=nperseg, noverlap=noverlap,
nfft=nfft, detrend=detrend, return_onesided=return_onesided,
boundary=boundary, padded=padded, axis=axis, scaling=scaling)
f, t, Zxx = stft(**kw)
f_wrapper, t_wrapper, Zxx_wrapper = _stft_wrapper(**kw)
e_msg_part = " of `stft_wrapper()` differ from `stft()`."
assert_allclose(f_wrapper, f, err_msg=f"Frequencies {e_msg_part}")
assert_allclose(t_wrapper, t, err_msg=f"Time slices {e_msg_part}")
# Adapted tolerances to account for:
atol = np.finfo(Zxx.dtype).resolution * 2
assert_allclose(Zxx_wrapper, Zxx, atol=atol,
err_msg=f"STFT values {e_msg_part}")
return f, t, Zxx
def istft_compare(Zxx, fs=1.0, window='hann', nperseg=None, noverlap=None,
nfft=None, input_onesided=True, boundary=True, time_axis=-1,
freq_axis=-2, scaling='spectrum'):
"""Assert that the results from the existing `istft()` and
`_istft_wrapper()` are close to each other.
Quirks:
* If ``boundary=False`` the comparison is skipped, since it does not
make sense with ShortTimeFFT.istft(). Only used in test
TestSTFT.test_roundtrip_boundary_extension().
* If ShortTimeFFT.istft() decides the STFT is not invertible, the
comparison is skipped, since istft() only emits a warning and does not
return a correct result. Only used in
ShortTimeFFT.test_roundtrip_not_nola().
* For comparing the signals an absolute tolerance of the floating point
resolution was added to account for the low accuracy of float32 (Occurs
only in TestSTFT.test_roundtrip_float32()).
"""
kw = dict(Zxx=Zxx, fs=fs, window=window, nperseg=nperseg,
noverlap=noverlap, nfft=nfft, input_onesided=input_onesided,
boundary=boundary, time_axis=time_axis, freq_axis=freq_axis,
scaling=scaling)
t, x = istft(**kw)
if not boundary: # skip test_roundtrip_boundary_extension():
return t, x # _istft_wrapper does() not implement this case
try: # if inversion fails, istft() only emits a warning:
t_wrapper, x_wrapper, (k_lo, k_hi) = _istft_wrapper(**kw)
except ValueError as v: # Do nothing if inversion fails:
if v.args[0] == "Short-time Fourier Transform not invertible!":
return t, x
raise v
e_msg_part = " of `istft_wrapper()` differ from `istft()`"
assert_allclose(t, t_wrapper, err_msg=f"Sample times {e_msg_part}")
# Adapted tolerances to account for resolution loss:
atol = np.finfo(x.dtype).resolution*2 # instead of default atol = 0
rtol = 1e-7 # default for np.allclose()
# Relax atol on 32-Bit platforms a bit to pass CI tests.
# - Not clear why there are discrepancies (in the FFT maybe?)
# - Not sure what changed on 'i686' since earlier on those test passed
if x.dtype == np.float32 and platform.machine() == 'i686':
# float32 gets only used by TestSTFT.test_roundtrip_float32() so
# we are using the tolerances from there to circumvent CI problems
atol, rtol = 1e-4, 1e-5
elif platform.machine() in ('aarch64', 'i386', 'i686'):
atol = max(atol, 1e-12) # 2e-15 seems too tight for 32-Bit platforms
assert_allclose(x_wrapper[k_lo:k_hi], x[k_lo:k_hi], atol=atol, rtol=rtol,
err_msg=f"Signal values {e_msg_part}")
return t, x

View file

@ -0,0 +1,122 @@
"""
Some signal functions implemented using mpmath.
"""
try:
import mpmath
except ImportError:
mpmath = None
def _prod(seq):
"""Returns the product of the elements in the sequence `seq`."""
p = 1
for elem in seq:
p *= elem
return p
def _relative_degree(z, p):
"""
Return relative degree of transfer function from zeros and poles.
This is simply len(p) - len(z), which must be nonnegative.
A ValueError is raised if len(p) < len(z).
"""
degree = len(p) - len(z)
if degree < 0:
raise ValueError("Improper transfer function. "
"Must have at least as many poles as zeros.")
return degree
def _zpkbilinear(z, p, k, fs):
"""Bilinear transformation to convert a filter from analog to digital."""
degree = _relative_degree(z, p)
fs2 = 2*fs
# Bilinear transform the poles and zeros
z_z = [(fs2 + z1) / (fs2 - z1) for z1 in z]
p_z = [(fs2 + p1) / (fs2 - p1) for p1 in p]
# Any zeros that were at infinity get moved to the Nyquist frequency
z_z.extend([-1] * degree)
# Compensate for gain change
numer = _prod(fs2 - z1 for z1 in z)
denom = _prod(fs2 - p1 for p1 in p)
k_z = k * numer / denom
return z_z, p_z, k_z.real
def _zpklp2lp(z, p, k, wo=1):
"""Transform a lowpass filter to a different cutoff frequency."""
degree = _relative_degree(z, p)
# Scale all points radially from origin to shift cutoff frequency
z_lp = [wo * z1 for z1 in z]
p_lp = [wo * p1 for p1 in p]
# Each shifted pole decreases gain by wo, each shifted zero increases it.
# Cancel out the net change to keep overall gain the same
k_lp = k * wo**degree
return z_lp, p_lp, k_lp
def _butter_analog_poles(n):
"""
Poles of an analog Butterworth lowpass filter.
This is the same calculation as scipy.signal.buttap(n) or
scipy.signal.butter(n, 1, analog=True, output='zpk'), but mpmath is used,
and only the poles are returned.
"""
poles = [-mpmath.exp(1j*mpmath.pi*k/(2*n)) for k in range(-n+1, n, 2)]
return poles
def butter_lp(n, Wn):
"""
Lowpass Butterworth digital filter design.
This computes the same result as scipy.signal.butter(n, Wn, output='zpk'),
but it uses mpmath, and the results are returned in lists instead of NumPy
arrays.
"""
zeros = []
poles = _butter_analog_poles(n)
k = 1
fs = 2
warped = 2 * fs * mpmath.tan(mpmath.pi * Wn / fs)
z, p, k = _zpklp2lp(zeros, poles, k, wo=warped)
z, p, k = _zpkbilinear(z, p, k, fs=fs)
return z, p, k
def zpkfreqz(z, p, k, worN=None):
"""
Frequency response of a filter in zpk format, using mpmath.
This is the same calculation as scipy.signal.freqz, but the input is in
zpk format, the calculation is performed using mpath, and the results are
returned in lists instead of NumPy arrays.
"""
if worN is None or isinstance(worN, int):
N = worN or 512
ws = [mpmath.pi * mpmath.mpf(j) / N for j in range(N)]
else:
ws = worN
h = []
for wk in ws:
zm1 = mpmath.exp(1j * wk)
numer = _prod([zm1 - t for t in z])
denom = _prod([zm1 - t for t in p])
hk = k * numer / denom
h.append(hk)
return ws, h

View file

@ -0,0 +1,111 @@
import numpy as np
from scipy._lib._array_api import xp_assert_equal
from pytest import raises as assert_raises
from scipy.signal._arraytools import (axis_slice, axis_reverse,
odd_ext, even_ext, const_ext, zero_ext)
class TestArrayTools:
def test_axis_slice(self):
a = np.arange(12).reshape(3, 4)
s = axis_slice(a, start=0, stop=1, axis=0)
xp_assert_equal(s, a[0:1, :])
s = axis_slice(a, start=-1, axis=0)
xp_assert_equal(s, a[-1:, :])
s = axis_slice(a, start=0, stop=1, axis=1)
xp_assert_equal(s, a[:, 0:1])
s = axis_slice(a, start=-1, axis=1)
xp_assert_equal(s, a[:, -1:])
s = axis_slice(a, start=0, step=2, axis=0)
xp_assert_equal(s, a[::2, :])
s = axis_slice(a, start=0, step=2, axis=1)
xp_assert_equal(s, a[:, ::2])
def test_axis_reverse(self):
a = np.arange(12).reshape(3, 4)
r = axis_reverse(a, axis=0)
xp_assert_equal(r, a[::-1, :])
r = axis_reverse(a, axis=1)
xp_assert_equal(r, a[:, ::-1])
def test_odd_ext(self):
a = np.array([[1, 2, 3, 4, 5],
[9, 8, 7, 6, 5]])
odd = odd_ext(a, 2, axis=1)
expected = np.array([[-1, 0, 1, 2, 3, 4, 5, 6, 7],
[11, 10, 9, 8, 7, 6, 5, 4, 3]])
xp_assert_equal(odd, expected)
odd = odd_ext(a, 1, axis=0)
expected = np.array([[-7, -4, -1, 2, 5],
[1, 2, 3, 4, 5],
[9, 8, 7, 6, 5],
[17, 14, 11, 8, 5]])
xp_assert_equal(odd, expected)
assert_raises(ValueError, odd_ext, a, 2, axis=0)
assert_raises(ValueError, odd_ext, a, 5, axis=1)
def test_even_ext(self):
a = np.array([[1, 2, 3, 4, 5],
[9, 8, 7, 6, 5]])
even = even_ext(a, 2, axis=1)
expected = np.array([[3, 2, 1, 2, 3, 4, 5, 4, 3],
[7, 8, 9, 8, 7, 6, 5, 6, 7]])
xp_assert_equal(even, expected)
even = even_ext(a, 1, axis=0)
expected = np.array([[9, 8, 7, 6, 5],
[1, 2, 3, 4, 5],
[9, 8, 7, 6, 5],
[1, 2, 3, 4, 5]])
xp_assert_equal(even, expected)
assert_raises(ValueError, even_ext, a, 2, axis=0)
assert_raises(ValueError, even_ext, a, 5, axis=1)
def test_const_ext(self):
a = np.array([[1, 2, 3, 4, 5],
[9, 8, 7, 6, 5]])
const = const_ext(a, 2, axis=1)
expected = np.array([[1, 1, 1, 2, 3, 4, 5, 5, 5],
[9, 9, 9, 8, 7, 6, 5, 5, 5]])
xp_assert_equal(const, expected)
const = const_ext(a, 1, axis=0)
expected = np.array([[1, 2, 3, 4, 5],
[1, 2, 3, 4, 5],
[9, 8, 7, 6, 5],
[9, 8, 7, 6, 5]])
xp_assert_equal(const, expected)
def test_zero_ext(self):
a = np.array([[1, 2, 3, 4, 5],
[9, 8, 7, 6, 5]])
zero = zero_ext(a, 2, axis=1)
expected = np.array([[0, 0, 1, 2, 3, 4, 5, 0, 0],
[0, 0, 9, 8, 7, 6, 5, 0, 0]])
xp_assert_equal(zero, expected)
zero = zero_ext(a, 1, axis=0)
expected = np.array([[0, 0, 0, 0, 0],
[1, 2, 3, 4, 5],
[9, 8, 7, 6, 5],
[0, 0, 0, 0, 0]])
xp_assert_equal(zero, expected)

View file

@ -0,0 +1,365 @@
# pylint: disable=missing-docstring
import math
import numpy as np
from scipy._lib._array_api import (
assert_almost_equal, xp_assert_close, xp_assert_equal
)
import pytest
from pytest import raises
from scipy import signal
skip_xp_backends = pytest.mark.skip_xp_backends
xfail_xp_backends = pytest.mark.xfail_xp_backends
class TestBSplines:
"""Test behaviors of B-splines. Some of the values tested against were
returned as of SciPy 1.1.0 and are included for regression testing
purposes. Others (at integer points) are compared to theoretical
expressions (cf. Unser, Aldroubi, Eden, IEEE TSP 1993, Table 1)."""
@skip_xp_backends(cpu_only=True, exceptions=["cupy"])
def test_spline_filter(self, xp):
rng = np.random.RandomState(12457)
# Test the type-error branch
raises(TypeError, signal.spline_filter, xp.asarray([0]), 0)
# Test the real branch
data_array_real = rng.rand(12, 12)
# make the magnitude exceed 1, and make some negative
data_array_real = 10*(1-2*data_array_real)
data_array_real = xp.asarray(data_array_real)
result_array_real = xp.asarray(
[[-.463312621, 8.33391222, .697290949, 5.28390836,
5.92066474, 6.59452137, 9.84406950, -8.78324188,
7.20675750, -8.17222994, -4.38633345, 9.89917069],
[2.67755154, 6.24192170, -3.15730578, 9.87658581,
-9.96930425, 3.17194115, -4.50919947, 5.75423446,
9.65979824, -8.29066885, .971416087, -2.38331897],
[-7.08868346, 4.89887705, -1.37062289, 7.70705838,
2.51526461, 3.65885497, 5.16786604, -8.77715342e-03,
4.10533325, 9.04761993, -.577960351, 9.86382519],
[-4.71444301, -1.68038985, 2.84695116, 1.14315938,
-3.17127091, 1.91830461, 7.13779687, -5.35737482,
-9.66586425, -9.87717456, 9.93160672, 4.71948144],
[9.49551194, -1.92958436, 6.25427993, -9.05582911,
3.97562282, 7.68232426, -1.04514824, -5.86021443,
-8.43007451, 5.47528997, 2.06330736, -8.65968112],
[-8.91720100, 8.87065356, 3.76879937, 2.56222894,
-.828387146, 8.72288903, 6.42474741, -6.84576083,
9.94724115, 6.90665380, -6.61084494, -9.44907391],
[9.25196790, -.774032030, 7.05371046, -2.73505725,
2.53953305, -1.82889155, 2.95454824, -1.66362046,
5.72478916, -3.10287679, 1.54017123, -7.87759020],
[-3.98464539, -2.44316992, -1.12708657, 1.01725672,
-8.89294671, -5.42145629, -6.16370321, 2.91775492,
9.64132208, .702499998, -2.02622392, 1.56308431],
[-2.22050773, 7.89951554, 5.98970713, -7.35861835,
5.45459283, -7.76427957, 3.67280490, -4.05521315,
4.51967507, -3.22738749, -3.65080177, 3.05630155],
[-6.21240584, -.296796126, -8.34800163, 9.21564563,
-3.61958784, -4.77120006, -3.99454057, 1.05021988e-03,
-6.95982829, 6.04380797, 8.43181250, -2.71653339],
[1.19638037, 6.99718842e-02, 6.72020394, -2.13963198,
3.75309875, -5.70076744, 5.92143551, -7.22150575,
-3.77114594, -1.11903194, -5.39151466, 3.06620093],
[9.86326886, 1.05134482, -7.75950607, -3.64429655,
7.81848957, -9.02270373, 3.73399754, -4.71962549,
-7.71144306, 3.78263161, 6.46034818, -4.43444731]], dtype=xp.float64)
xp_assert_close(signal.spline_filter(data_array_real, 0),
result_array_real)
@skip_xp_backends(cpu_only=True, exceptions=["cupy"])
def test_spline_filter_complex(self, xp):
rng = np.random.RandomState(12457)
data_array_complex = rng.rand(7, 7) + rng.rand(7, 7)*1j
# make the magnitude exceed 1, and make some negative
data_array_complex = 10*(1+1j-2*data_array_complex)
data_array_complex = xp.asarray(data_array_complex)
result_array_complex = xp.asarray(
[[-4.61489230e-01-1.92994022j, 8.33332443+6.25519943j,
6.96300745e-01-9.05576038j, 5.28294849+3.97541356j,
5.92165565+7.68240595j, 6.59493160-1.04542804j,
9.84503460-5.85946894j],
[-8.78262329-8.4295969j, 7.20675516+5.47528982j,
-8.17223072+2.06330729j, -4.38633347-8.65968037j,
9.89916801-8.91720295j, 2.67755103+8.8706522j,
6.24192142+3.76879835j],
[-3.15627527+2.56303072j, 9.87658501-0.82838702j,
-9.96930313+8.72288895j, 3.17193985+6.42474651j,
-4.50919819-6.84576082j, 5.75423431+9.94723988j,
9.65979767+6.90665293j],
[-8.28993416-6.61064005j, 9.71416473e-01-9.44907284j,
-2.38331890+9.25196648j, -7.08868170-0.77403212j,
4.89887714+7.05371094j, -1.37062311-2.73505688j,
7.70705748+2.5395329j],
[2.51528406-1.82964492j, 3.65885472+2.95454836j,
5.16786575-1.66362023j, -8.77737999e-03+5.72478867j,
4.10533333-3.10287571j, 9.04761887+1.54017115j,
-5.77960968e-01-7.87758923j],
[9.86398506-3.98528528j, -4.71444130-2.44316983j,
-1.68038976-1.12708664j, 2.84695053+1.01725709j,
1.14315915-8.89294529j, -3.17127085-5.42145538j,
1.91830420-6.16370344j],
[7.13875294+2.91851187j, -5.35737514+9.64132309j,
-9.66586399+0.70250005j, -9.87717438-2.0262239j,
9.93160629+1.5630846j, 4.71948051-2.22050714j,
9.49550819+7.8995142j]], dtype=xp.complex128)
# FIXME: for complex types, the computations are done in
# single precision (reason unclear). When this is changed,
# this test needs updating.
xp_assert_close(signal.spline_filter(data_array_complex, 0),
result_array_complex, rtol=1e-6)
def test_gauss_spline(self, xp):
assert math.isclose(signal.gauss_spline(0, 0), 1.381976597885342)
xp_assert_close(signal.gauss_spline(xp.asarray([1.]), 1),
xp.asarray([0.04865217]), atol=1e-9
)
@skip_xp_backends(np_only=True, reason="deliberate: array-likes are accepted")
def test_gauss_spline_list(self, xp):
# regression test for gh-12152 (accept array_like)
knots = [-1.0, 0.0, -1.0]
assert_almost_equal(signal.gauss_spline(knots, 3),
np.asarray([0.15418033, 0.6909883, 0.15418033])
)
@skip_xp_backends(cpu_only=True)
def test_cspline1d(self, xp):
xp_assert_equal(signal.cspline1d(xp.asarray([0])),
xp.asarray([0.], dtype=xp.float64))
c1d = xp.asarray([1.21037185, 1.86293902, 2.98834059, 4.11660378,
4.78893826], dtype=xp.float64)
# test lamda != 0
xp_assert_close(signal.cspline1d(xp.asarray([1., 2, 3, 4, 5]), 1), c1d)
c1d0 = xp.asarray([0.78683946, 2.05333735, 2.99981113, 3.94741812,
5.21051638], dtype=xp.float64)
xp_assert_close(signal.cspline1d(xp.asarray([1., 2, 3, 4, 5])), c1d0)
@skip_xp_backends(cpu_only=True)
def test_qspline1d(self, xp):
xp_assert_equal(signal.qspline1d(xp.asarray([0])),
xp.asarray([0.], dtype=xp.float64))
# test lamda != 0
raises(ValueError, signal.qspline1d, xp.asarray([1., 2, 3, 4, 5]), 1.)
raises(ValueError, signal.qspline1d, xp.asarray([1., 2, 3, 4, 5]), -1.)
q1d0 = xp.asarray([0.85350007, 2.02441743, 2.99999534, 3.97561055,
5.14634135], dtype=xp.float64)
xp_assert_close(
signal.qspline1d(xp.asarray([1., 2, 3, 4, 5], dtype=xp.float64)), q1d0
)
@skip_xp_backends(cpu_only=True)
def test_cspline1d_eval(self, xp):
r = signal.cspline1d_eval(xp.asarray([0., 0], dtype=xp.float64),
xp.asarray([0.], dtype=xp.float64))
xp_assert_close(r, xp.asarray([0.], dtype=xp.float64))
r = signal.cspline1d_eval(xp.asarray([1., 0, 1], dtype=xp.float64),
xp.asarray([], dtype=xp.float64))
xp_assert_equal(r, xp.asarray([], dtype=xp.float64))
x = [-3, -2, -1, 0, 1, 2, 3, 4, 5, 6]
dx = x[1] - x[0]
newx = [-6., -5.5, -5., -4.5, -4., -3.5, -3., -2.5, -2., -1.5, -1.,
-0.5, 0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6.,
6.5, 7., 7.5, 8., 8.5, 9., 9.5, 10., 10.5, 11., 11.5, 12.,
12.5]
y = xp.asarray([4.216, 6.864, 3.514, 6.203, 6.759, 7.433, 7.874, 5.879,
1.396, 4.094])
cj = signal.cspline1d(y)
newy = xp.asarray([6.203, 4.41570658, 3.514, 5.16924703, 6.864, 6.04643068,
4.21600281, 6.04643068, 6.864, 5.16924703, 3.514,
4.41570658, 6.203, 6.80717667, 6.759, 6.98971173, 7.433,
7.79560142, 7.874, 7.41525761, 5.879, 3.18686814, 1.396,
2.24889482, 4.094, 2.24889482, 1.396, 3.18686814, 5.879,
7.41525761, 7.874, 7.79560142, 7.433, 6.98971173, 6.759,
6.80717667, 6.203, 4.41570658], dtype=xp.float64)
xp_assert_close(
signal.cspline1d_eval(cj, xp.asarray(newx), dx=dx, x0=x[0]), newy
)
with pytest.raises(ValueError,
match="Spline coefficients 'cj' must not be empty."):
signal.cspline1d_eval(xp.asarray([], dtype=xp.float64),
xp.asarray([0.0], dtype=xp.float64))
@skip_xp_backends(cpu_only=True)
def test_qspline1d_eval(self, xp):
xp_assert_close(signal.qspline1d_eval(xp.asarray([0., 0]), xp.asarray([0.])),
xp.asarray([0.])
)
xp_assert_equal(signal.qspline1d_eval(xp.asarray([1., 0, 1]), xp.asarray([])),
xp.asarray([])
)
x = [-3, -2, -1, 0, 1, 2, 3, 4, 5, 6]
dx = x[1] - x[0]
newx = [-6., -5.5, -5., -4.5, -4., -3.5, -3., -2.5, -2., -1.5, -1.,
-0.5, 0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6.,
6.5, 7., 7.5, 8., 8.5, 9., 9.5, 10., 10.5, 11., 11.5, 12.,
12.5]
y = xp.asarray([4.216, 6.864, 3.514, 6.203, 6.759, 7.433, 7.874, 5.879,
1.396, 4.094])
cj = signal.qspline1d(y)
newy = xp.asarray([6.203, 4.49418159, 3.514, 5.18390821, 6.864, 5.91436915,
4.21600002, 5.91436915, 6.864, 5.18390821, 3.514,
4.49418159, 6.203, 6.71900226, 6.759, 7.03980488, 7.433,
7.81016848, 7.874, 7.32718426, 5.879, 3.23872593, 1.396,
2.34046013, 4.094, 2.34046013, 1.396, 3.23872593, 5.879,
7.32718426, 7.874, 7.81016848, 7.433, 7.03980488, 6.759,
6.71900226, 6.203, 4.49418159], dtype=xp.float64)
r = signal.qspline1d_eval(
cj, xp.asarray(newx, dtype=xp.float64), dx=dx, x0=x[0]
)
xp_assert_close(r, newy)
with pytest.raises(ValueError,
match="Spline coefficients 'cj' must not be empty."):
signal.qspline1d_eval(xp.asarray([], dtype=xp.float64),
xp.asarray([0.0], dtype=xp.float64))
# i/o dtypes with scipy 1.9.1, likely fixed by backwards compat
sepfir_dtype_map = {np.uint8: np.float32, int: np.float64,
np.float32: np.float32, float: float,
np.complex64: np.complex64, complex: complex}
@skip_xp_backends(np_only=True)
class TestSepfir2d:
def test_sepfir2d_invalid_filter(self, xp):
filt = xp.asarray([1.0, 2.0, 4.0, 2.0, 1.0])
image = np.random.rand(7, 9)
image = xp.asarray(image)
# No error for odd lengths
signal.sepfir2d(image, filt, filt[2:])
# Row or column filter must be odd
with pytest.raises(ValueError, match="odd length"):
signal.sepfir2d(image, filt, filt[1:])
with pytest.raises(ValueError, match="odd length"):
signal.sepfir2d(image, filt[1:], filt)
# Filters must be 1-dimensional
with pytest.raises(ValueError, match="object too deep"):
signal.sepfir2d(image, xp.reshape(filt, (1, -1)), filt)
with pytest.raises(ValueError, match="object too deep"):
signal.sepfir2d(image, filt, xp.reshape(filt, (1, -1)))
def test_sepfir2d_invalid_image(self, xp):
filt = xp.asarray([1.0, 2.0, 4.0, 2.0, 1.0])
image = np.random.rand(8, 8)
image = xp.asarray(image)
# Image must be 2 dimensional
with pytest.raises(ValueError, match="object too deep"):
signal.sepfir2d(xp.reshape(image, (4, 4, 4)), filt, filt)
with pytest.raises(ValueError, match="object of too small depth"):
signal.sepfir2d(image[0, :], filt, filt)
@pytest.mark.parametrize('dtyp',
[np.uint8, int, np.float32, float, np.complex64, complex]
)
def test_simple(self, dtyp, xp):
# test values on a paper-and-pencil example
a = np.array([[1, 2, 3, 3, 2, 1],
[1, 2, 3, 3, 2, 1],
[1, 2, 3, 3, 2, 1],
[1, 2, 3, 3, 2, 1]], dtype=dtyp)
h1 = [0.5, 1, 0.5]
h2 = [1]
result = signal.sepfir2d(a, h1, h2)
dt = sepfir_dtype_map[dtyp]
expected = np.asarray([[2.5, 4. , 5.5, 5.5, 4. , 2.5],
[2.5, 4. , 5.5, 5.5, 4. , 2.5],
[2.5, 4. , 5.5, 5.5, 4. , 2.5],
[2.5, 4. , 5.5, 5.5, 4. , 2.5]], dtype=dt)
xp_assert_close(result, expected, atol=1e-16)
result = signal.sepfir2d(a, h2, h1)
expected = np.asarray([[2., 4., 6., 6., 4., 2.],
[2., 4., 6., 6., 4., 2.],
[2., 4., 6., 6., 4., 2.],
[2., 4., 6., 6., 4., 2.]], dtype=dt)
xp_assert_close(result, expected, atol=1e-16)
@skip_xp_backends(np_only=True, reason="TODO: convert this test")
@pytest.mark.parametrize('dtyp',
[np.uint8, int, np.float32, float, np.complex64, complex]
)
def test_strided(self, dtyp, xp):
a = np.array([[1, 2, 3, 3, 2, 1, 1, 2, 3],
[1, 2, 3, 3, 2, 1, 1, 2, 3],
[1, 2, 3, 3, 2, 1, 1, 2, 3],
[1, 2, 3, 3, 2, 1, 1, 2, 3]])
h1, h2 = [0.5, 1, 0.5], [1]
result_strided = signal.sepfir2d(a[:, ::2], h1, h2)
result_contig = signal.sepfir2d(a[:, ::2].copy(), h1, h2)
xp_assert_close(result_strided, result_contig, atol=1e-15)
assert result_strided.dtype == result_contig.dtype
@skip_xp_backends(np_only=True, reason="TODO: convert this test")
@pytest.mark.xfail(reason="XXX: filt.size > image.shape: flaky")
def test_sepfir2d_strided_2(self, xp):
# XXX: this test is flaky: fails on some reruns, with
# result[0, 1] and result[1, 1] being ~1e+224.
filt = np.array([1.0, 2.0, 4.0, 2.0, 1.0, 3.0, 2.0])
image = np.random.rand(4, 4)
expected = np.asarray([[36.018162, 30.239061, 38.71187 , 43.878183],
[38.180999, 35.824583, 43.525247, 43.874945],
[43.269533, 40.834018, 46.757772, 44.276423],
[49.120928, 39.681844, 43.596067, 45.085854]])
xp_assert_close(signal.sepfir2d(image, filt, filt[::3]), expected)
@skip_xp_backends(np_only=True, reason="TODO: convert this test")
@pytest.mark.xfail(reason="XXX: flaky. pointers OOB on some platforms")
@pytest.mark.parametrize('dtyp',
[np.uint8, int, np.float32, float, np.complex64, complex]
)
def test_sepfir2d_strided_3(self, dtyp, xp):
# NB: 'image' and 'filt' dtypes match here. Otherwise we can run into
# unsafe casting errors for many combinations. Historically, dtype handling
# in `sepfir2d` is a tad baroque; fixing it is an enhancement.
filt = np.array([1, 2, 4, 2, 1, 3, 2], dtype=dtyp)
image = np.asarray([[0, 3, 0, 1, 2],
[2, 2, 3, 3, 3],
[0, 1, 3, 0, 3],
[2, 3, 0, 1, 3],
[3, 3, 2, 1, 2]], dtype=dtyp)
expected = [[123., 101., 91., 136., 127.],
[133., 125., 126., 152., 160.],
[136., 137., 150., 162., 177.],
[133., 124., 132., 148., 147.],
[173., 158., 152., 164., 141.]]
expected = np.asarray(expected)
result = signal.sepfir2d(image, filt, filt[::3])
xp_assert_close(result, expected, atol=1e-15)
assert result.dtype == sepfir_dtype_map[dtyp]
expected = [[22., 35., 41., 31., 47.],
[27., 39., 48., 47., 55.],
[33., 42., 49., 53., 59.],
[39., 44., 41., 36., 48.],
[67., 62., 47., 34., 46.]]
expected = np.asarray(expected)
result = signal.sepfir2d(image, filt[::3], filt[::3])
xp_assert_close(result, expected, atol=1e-15)
assert result.dtype == sepfir_dtype_map[dtyp]
def test_cspline2d(xp):
rng = np.random.RandomState(181819142)
image = rng.rand(71, 73)
signal.cspline2d(image, 8.0)
def test_qspline2d(xp):
rng = np.random.RandomState(181819143)
image = rng.rand(71, 73)
signal.qspline2d(image)

View file

@ -0,0 +1,424 @@
import numpy as np
from scipy._lib._array_api import (
assert_array_almost_equal, assert_almost_equal, xp_assert_close
)
import pytest
from scipy.signal import cont2discrete as c2d
from scipy.signal import dlsim, ss2tf, ss2zpk, lsim, lti
from scipy.signal import tf2ss, impulse, dimpulse, step, dstep
# Author: Jeffrey Armstrong <jeff@approximatrix.com>
# March 29, 2011
class TestC2D:
def test_zoh(self):
ac = np.eye(2, dtype=np.float64)
bc = np.full((2, 1), 0.5, dtype=np.float64)
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
dc = np.array([[0.0], [0.0], [-0.33]])
ad_truth = 1.648721270700128 * np.eye(2)
bd_truth = np.full((2, 1), 0.324360635350064)
# c and d in discrete should be equal to their continuous counterparts
dt_requested = 0.5
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested, method='zoh')
assert_array_almost_equal(ad_truth, ad)
assert_array_almost_equal(bd_truth, bd)
assert_array_almost_equal(cc, cd)
assert_array_almost_equal(dc, dd)
assert_almost_equal(dt_requested, dt)
def test_foh(self):
ac = np.eye(2)
bc = np.full((2, 1), 0.5)
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
dc = np.array([[0.0], [0.0], [-0.33]])
# True values are verified with Matlab
ad_truth = 1.648721270700128 * np.eye(2)
bd_truth = np.full((2, 1), 0.420839287058789)
cd_truth = cc
dd_truth = np.array([[0.260262223725224],
[0.297442541400256],
[-0.144098411624840]])
dt_requested = 0.5
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested, method='foh')
assert_array_almost_equal(ad_truth, ad)
assert_array_almost_equal(bd_truth, bd)
assert_array_almost_equal(cd_truth, cd)
assert_array_almost_equal(dd_truth, dd)
assert_almost_equal(dt_requested, dt)
def test_impulse(self):
ac = np.eye(2)
bc = np.full((2, 1), 0.5)
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
dc = np.array([[0.0], [0.0], [0.0]])
# True values are verified with Matlab
ad_truth = 1.648721270700128 * np.eye(2)
bd_truth = np.full((2, 1), 0.412180317675032)
cd_truth = cc
dd_truth = np.array([[0.4375], [0.5], [0.3125]])
dt_requested = 0.5
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested,
method='impulse')
assert_array_almost_equal(ad_truth, ad)
assert_array_almost_equal(bd_truth, bd)
assert_array_almost_equal(cd_truth, cd)
assert_array_almost_equal(dd_truth, dd)
assert_almost_equal(dt_requested, dt)
def test_gbt(self):
ac = np.eye(2)
bc = np.full((2, 1), 0.5)
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
dc = np.array([[0.0], [0.0], [-0.33]])
dt_requested = 0.5
alpha = 1.0 / 3.0
ad_truth = 1.6 * np.eye(2)
bd_truth = np.full((2, 1), 0.3)
cd_truth = np.array([[0.9, 1.2],
[1.2, 1.2],
[1.2, 0.3]])
dd_truth = np.array([[0.175],
[0.2],
[-0.205]])
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested,
method='gbt', alpha=alpha)
assert_array_almost_equal(ad_truth, ad)
assert_array_almost_equal(bd_truth, bd)
assert_array_almost_equal(cd_truth, cd)
assert_array_almost_equal(dd_truth, dd)
def test_euler(self):
ac = np.eye(2)
bc = np.full((2, 1), 0.5)
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
dc = np.array([[0.0], [0.0], [-0.33]])
dt_requested = 0.5
ad_truth = 1.5 * np.eye(2)
bd_truth = np.full((2, 1), 0.25)
cd_truth = np.array([[0.75, 1.0],
[1.0, 1.0],
[1.0, 0.25]])
dd_truth = dc
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested,
method='euler')
assert_array_almost_equal(ad_truth, ad)
assert_array_almost_equal(bd_truth, bd)
assert_array_almost_equal(cd_truth, cd)
assert_array_almost_equal(dd_truth, dd)
assert_almost_equal(dt_requested, dt)
def test_backward_diff(self):
ac = np.eye(2)
bc = np.full((2, 1), 0.5)
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
dc = np.array([[0.0], [0.0], [-0.33]])
dt_requested = 0.5
ad_truth = 2.0 * np.eye(2)
bd_truth = np.full((2, 1), 0.5)
cd_truth = np.array([[1.5, 2.0],
[2.0, 2.0],
[2.0, 0.5]])
dd_truth = np.array([[0.875],
[1.0],
[0.295]])
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested,
method='backward_diff')
assert_array_almost_equal(ad_truth, ad)
assert_array_almost_equal(bd_truth, bd)
assert_array_almost_equal(cd_truth, cd)
assert_array_almost_equal(dd_truth, dd)
def test_bilinear(self):
ac = np.eye(2)
bc = np.full((2, 1), 0.5)
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
dc = np.array([[0.0], [0.0], [-0.33]])
dt_requested = 0.5
ad_truth = (5.0 / 3.0) * np.eye(2)
bd_truth = np.full((2, 1), 1.0 / 3.0)
cd_truth = np.array([[1.0, 4.0 / 3.0],
[4.0 / 3.0, 4.0 / 3.0],
[4.0 / 3.0, 1.0 / 3.0]])
dd_truth = np.array([[0.291666666666667],
[1.0 / 3.0],
[-0.121666666666667]])
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested,
method='bilinear')
assert_array_almost_equal(ad_truth, ad)
assert_array_almost_equal(bd_truth, bd)
assert_array_almost_equal(cd_truth, cd)
assert_array_almost_equal(dd_truth, dd)
assert_almost_equal(dt_requested, dt)
# Same continuous system again, but change sampling rate
ad_truth = 1.4 * np.eye(2)
bd_truth = np.full((2, 1), 0.2)
cd_truth = np.array([[0.9, 1.2], [1.2, 1.2], [1.2, 0.3]])
dd_truth = np.array([[0.175], [0.2], [-0.205]])
dt_requested = 1.0 / 3.0
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested,
method='bilinear')
assert_array_almost_equal(ad_truth, ad)
assert_array_almost_equal(bd_truth, bd)
assert_array_almost_equal(cd_truth, cd)
assert_array_almost_equal(dd_truth, dd)
assert_almost_equal(dt_requested, dt)
def test_transferfunction(self):
numc = np.array([0.25, 0.25, 0.5])
denc = np.array([0.75, 0.75, 1.0])
numd = np.array([[1.0 / 3.0, -0.427419169438754, 0.221654141101125]])
dend = np.array([1.0, -1.351394049721225, 0.606530659712634])
dt_requested = 0.5
num, den, dt = c2d((numc, denc), dt_requested, method='zoh')
assert_array_almost_equal(numd, num)
assert_array_almost_equal(dend, den)
assert_almost_equal(dt_requested, dt)
def test_zerospolesgain(self):
zeros_c = np.array([0.5, -0.5])
poles_c = np.array([1.j / np.sqrt(2), -1.j / np.sqrt(2)])
k_c = 1.0
zeros_d = [1.23371727305860, 0.735356894461267]
polls_d = [0.938148335039729 + 0.346233593780536j,
0.938148335039729 - 0.346233593780536j]
k_d = 1.0
dt_requested = 0.5
zeros, poles, k, dt = c2d((zeros_c, poles_c, k_c), dt_requested,
method='zoh')
assert_array_almost_equal(zeros_d, zeros)
assert_array_almost_equal(polls_d, poles)
assert_almost_equal(k_d, k)
assert_almost_equal(dt_requested, dt)
def test_gbt_with_sio_tf_and_zpk(self):
"""Test method='gbt' with alpha=0.25 for tf and zpk cases."""
# State space coefficients for the continuous SIO system.
A = -1.0
B = 1.0
C = 1.0
D = 0.5
# The continuous transfer function coefficients.
cnum, cden = ss2tf(A, B, C, D)
# Continuous zpk representation
cz, cp, ck = ss2zpk(A, B, C, D)
h = 1.0
alpha = 0.25
# Explicit formulas, in the scalar case.
Ad = (1 + (1 - alpha) * h * A) / (1 - alpha * h * A)
Bd = h * B / (1 - alpha * h * A)
Cd = C / (1 - alpha * h * A)
Dd = D + alpha * C * Bd
# Convert the explicit solution to tf
dnum, dden = ss2tf(Ad, Bd, Cd, Dd)
# Compute the discrete tf using cont2discrete.
c2dnum, c2dden, dt = c2d((cnum, cden), h, method='gbt', alpha=alpha)
xp_assert_close(dnum, c2dnum)
xp_assert_close(dden, c2dden)
# Convert explicit solution to zpk.
dz, dp, dk = ss2zpk(Ad, Bd, Cd, Dd)
# Compute the discrete zpk using cont2discrete.
c2dz, c2dp, c2dk, dt = c2d((cz, cp, ck), h, method='gbt', alpha=alpha)
xp_assert_close(dz, c2dz)
xp_assert_close(dp, c2dp)
xp_assert_close(dk, c2dk)
def test_discrete_approx(self):
"""
Test that the solution to the discrete approximation of a continuous
system actually approximates the solution to the continuous system.
This is an indirect test of the correctness of the implementation
of cont2discrete.
"""
def u(t):
return np.sin(2.5 * t)
a = np.array([[-0.01]])
b = np.array([[1.0]])
c = np.array([[1.0]])
d = np.array([[0.2]])
x0 = 1.0
t = np.linspace(0, 10.0, 101)
dt = t[1] - t[0]
u1 = u(t)
# Use lsim to compute the solution to the continuous system.
t, yout, xout = lsim((a, b, c, d), T=t, U=u1, X0=x0)
# Convert the continuous system to a discrete approximation.
dsys = c2d((a, b, c, d), dt, method='bilinear')
# Use dlsim with the pairwise averaged input to compute the output
# of the discrete system.
u2 = 0.5 * (u1[:-1] + u1[1:])
t2 = t[:-1]
td2, yd2, xd2 = dlsim(dsys, u=u2.reshape(-1, 1), t=t2, x0=x0)
# ymid is the average of consecutive terms of the "exact" output
# computed by lsim2. This is what the discrete approximation
# actually approximates.
ymid = 0.5 * (yout[:-1] + yout[1:])
xp_assert_close(yd2.ravel(), ymid, rtol=1e-4)
def test_simo_tf(self):
# See gh-5753
tf = ([[1, 0], [1, 1]], [1, 1])
num, den, dt = c2d(tf, 0.01)
assert dt == 0.01 # sanity check
xp_assert_close(den, [1, -0.990404983], rtol=1e-3)
xp_assert_close(num, [[1, -1], [1, -0.99004983]], rtol=1e-3)
def test_multioutput(self):
ts = 0.01 # time step
tf = ([[1, -3], [1, 5]], [1, 1])
num, den, dt = c2d(tf, ts)
tf1 = (tf[0][0], tf[1])
num1, den1, dt1 = c2d(tf1, ts)
tf2 = (tf[0][1], tf[1])
num2, den2, dt2 = c2d(tf2, ts)
# Sanity checks
assert dt == dt1
assert dt == dt2
# Check that we get the same results
xp_assert_close(num, np.vstack((num1, num2)), rtol=1e-13)
# Single input, so the denominator should
# not be multidimensional like the numerator
xp_assert_close(den, den1, rtol=1e-13)
xp_assert_close(den, den2, rtol=1e-13)
class TestC2dLti:
def test_c2d_ss(self):
# StateSpace
A = np.array([[-0.3, 0.1], [0.2, -0.7]])
B = np.array([[0], [1]])
C = np.array([[1, 0]])
D = 0
dt = 0.05
A_res = np.array([[0.985136404135682, 0.004876671474795],
[0.009753342949590, 0.965629718236502]])
B_res = np.array([[0.000122937599964], [0.049135527547844]])
sys_ssc = lti(A, B, C, D)
sys_ssd = sys_ssc.to_discrete(dt=dt)
xp_assert_close(sys_ssd.A, A_res)
xp_assert_close(sys_ssd.B, B_res)
xp_assert_close(sys_ssd.C, C)
xp_assert_close(sys_ssd.D, np.zeros_like(sys_ssd.D))
sys_ssd2 = c2d(sys_ssc, dt=dt)
xp_assert_close(sys_ssd2.A, A_res)
xp_assert_close(sys_ssd2.B, B_res)
xp_assert_close(sys_ssd2.C, C)
xp_assert_close(sys_ssd2.D, np.zeros_like(sys_ssd2.D))
def test_c2d_tf(self):
sys = lti([0.5, 0.3], [1.0, 0.4])
sys = sys.to_discrete(0.005)
# Matlab results
num_res = np.array([0.5, -0.485149004980066])
den_res = np.array([1.0, -0.980198673306755])
# Somehow a lot of numerical errors
xp_assert_close(sys.den, den_res, atol=0.02)
xp_assert_close(sys.num, num_res, atol=0.02)
class TestC2dInvariants:
# Some test cases for checking the invariances.
# Array of triplets: (system, sample time, number of samples)
cases = [
(tf2ss([1, 1], [1, 1.5, 1]), 0.25, 10),
(tf2ss([1, 2], [1, 1.5, 3, 1]), 0.5, 10),
(tf2ss(0.1, [1, 1, 2, 1]), 0.5, 10),
]
# Check that systems discretized with the impulse-invariant
# method really hold the invariant
@pytest.mark.parametrize("sys,sample_time,samples_number", cases)
def test_impulse_invariant(self, sys, sample_time, samples_number):
time = np.arange(samples_number) * sample_time
_, yout_cont = impulse(sys, T=time)
_, yout_disc = dimpulse(c2d(sys, sample_time, method='impulse'),
n=len(time))
xp_assert_close(sample_time * yout_cont.ravel(), yout_disc[0].ravel())
# Step invariant should hold for ZOH discretized systems
@pytest.mark.parametrize("sys,sample_time,samples_number", cases)
def test_step_invariant(self, sys, sample_time, samples_number):
time = np.arange(samples_number) * sample_time
_, yout_cont = step(sys, T=time)
_, yout_disc = dstep(c2d(sys, sample_time, method='zoh'), n=len(time))
xp_assert_close(yout_cont.ravel(), yout_disc[0].ravel())
# Linear invariant should hold for FOH discretized systems
@pytest.mark.parametrize("sys,sample_time,samples_number", cases)
def test_linear_invariant(self, sys, sample_time, samples_number):
time = np.arange(samples_number) * sample_time
_, yout_cont, _ = lsim(sys, T=time, U=time)
_, yout_disc, _ = dlsim(c2d(sys, sample_time, method='foh'), u=time)
xp_assert_close(yout_cont.ravel(), yout_disc.ravel())

View file

@ -0,0 +1,221 @@
# This program is public domain
# Authors: Paul Kienzle, Nadav Horesh
'''
A unit test module for czt.py
'''
import pytest
from scipy._lib._array_api import xp_assert_close
from scipy.fft import fft
from scipy.signal import (czt, zoom_fft, czt_points, CZT, ZoomFFT)
import numpy as np
def check_czt(x):
# Check that czt is the equivalent of normal fft
y = fft(x)
y1 = czt(x)
xp_assert_close(y1, y, rtol=1e-13)
# Check that interpolated czt is the equivalent of normal fft
y = fft(x, 100*len(x))
y1 = czt(x, 100*len(x))
xp_assert_close(y1, y, rtol=1e-12)
def check_zoom_fft(x):
# Check that zoom_fft is the equivalent of normal fft
y = fft(x)
y1 = zoom_fft(x, [0, 2-2./len(y)], endpoint=True)
xp_assert_close(y1, y, rtol=1e-11, atol=1e-14)
y1 = zoom_fft(x, [0, 2])
xp_assert_close(y1, y, rtol=1e-11, atol=1e-14)
# Test fn scalar
y1 = zoom_fft(x, 2-2./len(y), endpoint=True)
xp_assert_close(y1, y, rtol=1e-11, atol=1e-14)
y1 = zoom_fft(x, 2)
xp_assert_close(y1, y, rtol=1e-11, atol=1e-14)
# Check that zoom_fft with oversampling is equivalent to zero padding
over = 10
yover = fft(x, over*len(x))
y2 = zoom_fft(x, [0, 2-2./len(yover)], m=len(yover), endpoint=True)
xp_assert_close(y2, yover, rtol=1e-12, atol=1e-10)
y2 = zoom_fft(x, [0, 2], m=len(yover))
xp_assert_close(y2, yover, rtol=1e-12, atol=1e-10)
# Check that zoom_fft works on a subrange
w = np.linspace(0, 2-2./len(x), len(x))
f1, f2 = w[3], w[6]
y3 = zoom_fft(x, [f1, f2], m=3*over+1, endpoint=True)
idx3 = slice(3*over, 6*over+1)
xp_assert_close(y3, yover[idx3], rtol=1e-13)
def test_1D():
# Test of 1D version of the transforms
rng = np.random.RandomState(0) # Deterministic randomness
# Random signals
lengths = rng.randint(8, 200, 20)
np.append(lengths, 1)
for length in lengths:
x = rng.random(length)
check_zoom_fft(x)
check_czt(x)
# Gauss
t = np.linspace(-2, 2, 128)
x = np.exp(-t**2/0.01)
check_zoom_fft(x)
# Linear
x = [1, 2, 3, 4, 5, 6, 7]
check_zoom_fft(x)
# Check near powers of two
check_zoom_fft(range(126-31))
check_zoom_fft(range(127-31))
check_zoom_fft(range(128-31))
check_zoom_fft(range(129-31))
check_zoom_fft(range(130-31))
# Check transform on n-D array input
x = np.reshape(np.arange(3*2*28), (3, 2, 28))
y1 = zoom_fft(x, [0, 2-2./28])
y2 = zoom_fft(x[2, 0, :], [0, 2-2./28])
xp_assert_close(y1[2, 0], y2, rtol=1e-13, atol=1e-12)
y1 = zoom_fft(x, [0, 2], endpoint=False)
y2 = zoom_fft(x[2, 0, :], [0, 2], endpoint=False)
xp_assert_close(y1[2, 0], y2, rtol=1e-13, atol=1e-12)
# Random (not a test condition)
x = rng.rand(101)
check_zoom_fft(x)
# Spikes
t = np.linspace(0, 1, 128)
x = np.sin(2*np.pi*t*5)+np.sin(2*np.pi*t*13)
check_zoom_fft(x)
# Sines
x = np.zeros(100, dtype=complex)
x[[1, 5, 21]] = 1
check_zoom_fft(x)
# Sines plus complex component
x += 1j*np.linspace(0, 0.5, x.shape[0])
check_zoom_fft(x)
def test_large_prime_lengths():
rng = np.random.RandomState(0) # Deterministic randomness
for N in (101, 1009, 10007):
x = rng.rand(N)
y = fft(x)
y1 = czt(x)
xp_assert_close(y, y1, rtol=1e-12)
@pytest.mark.slow
def test_czt_vs_fft():
rng = np.random.RandomState(123) # Deterministic randomness
random_lengths = rng.exponential(100000, size=10).astype('int')
for n in random_lengths:
a = rng.randn(n)
xp_assert_close(czt(a), fft(a), rtol=1e-11)
def test_empty_input():
with pytest.raises(ValueError, match='Invalid number of CZT'):
czt([])
with pytest.raises(ValueError, match='Invalid number of CZT'):
zoom_fft([], 0.5)
def test_0_rank_input():
with pytest.raises(IndexError, match='tuple index out of range'):
czt(5)
with pytest.raises(IndexError, match='tuple index out of range'):
zoom_fft(5, 0.5)
@pytest.mark.parametrize('impulse', ([0, 0, 1], [0, 0, 1, 0, 0],
np.concatenate((np.array([0, 0, 1]),
np.zeros(100)))))
@pytest.mark.parametrize('m', (1, 3, 5, 8, 101, 1021))
@pytest.mark.parametrize('a', (1, 2, 0.5, 1.1))
# Step that tests away from the unit circle, but not so far it explodes from
# numerical error
@pytest.mark.parametrize('w', (None, 0.98534 + 0.17055j))
def test_czt_math(impulse, m, w, a):
# z-transform of an impulse is 1 everywhere
xp_assert_close(czt(impulse[2:], m=m, w=w, a=a),
np.ones(m, dtype=np.complex128), rtol=1e-10)
# z-transform of a delayed impulse is z**-1
xp_assert_close(czt(impulse[1:], m=m, w=w, a=a),
czt_points(m=m, w=w, a=a)**-1, rtol=1e-10)
# z-transform of a 2-delayed impulse is z**-2
xp_assert_close(czt(impulse, m=m, w=w, a=a),
czt_points(m=m, w=w, a=a)**-2, rtol=1e-10)
def test_int_args():
# Integer argument `a` was producing all 0s
xp_assert_close(abs(czt([0, 1], m=10, a=2)), 0.5*np.ones(10), rtol=1e-15)
xp_assert_close(czt_points(11, w=2),
1/(2**np.arange(11, dtype=np.complex128)), rtol=1e-30)
def test_czt_points():
for N in (1, 2, 3, 8, 11, 100, 101, 10007):
xp_assert_close(czt_points(N), np.exp(2j*np.pi*np.arange(N)/N),
rtol=1e-30)
xp_assert_close(czt_points(7, w=1), np.ones(7, dtype=np.complex128), rtol=1e-30)
xp_assert_close(czt_points(11, w=2.),
1/(2**np.arange(11, dtype=np.complex128)), rtol=1e-30)
func = CZT(12, m=11, w=2., a=1)
xp_assert_close(func.points(), 1/(2**np.arange(11)), rtol=1e-30)
@pytest.mark.parametrize('cls, args', [(CZT, (100,)), (ZoomFFT, (100, 0.2))])
def test_CZT_size_mismatch(cls, args):
# Data size doesn't match function's expected size
myfunc = cls(*args)
with pytest.raises(ValueError, match='CZT defined for'):
myfunc(np.arange(5))
def test_invalid_range():
with pytest.raises(ValueError, match='2-length sequence'):
ZoomFFT(100, [1, 2, 3])
@pytest.mark.parametrize('m', [0, -11, 5.5, 4.0])
def test_czt_points_errors(m):
# Invalid number of points
with pytest.raises(ValueError, match='Invalid number of CZT'):
czt_points(m)
@pytest.mark.parametrize('size', [0, -5, 3.5, 4.0])
def test_nonsense_size(size):
# Numpy and Scipy fft() give ValueError for 0 output size, so we do, too
with pytest.raises(ValueError, match='Invalid number of CZT'):
CZT(size, 3)
with pytest.raises(ValueError, match='Invalid number of CZT'):
ZoomFFT(size, 0.2, 3)
with pytest.raises(ValueError, match='Invalid number of CZT'):
CZT(3, size)
with pytest.raises(ValueError, match='Invalid number of CZT'):
ZoomFFT(3, 0.2, size)
with pytest.raises(ValueError, match='Invalid number of CZT'):
czt([1, 2, 3], size)
with pytest.raises(ValueError, match='Invalid number of CZT'):
zoom_fft([1, 2, 3], 0.2, size)

View file

@ -0,0 +1,599 @@
# Author: Jeffrey Armstrong <jeff@approximatrix.com>
# April 4, 2011
import numpy as np
from numpy.testing import suppress_warnings
from pytest import raises as assert_raises
from scipy._lib._array_api import (
assert_array_almost_equal, assert_almost_equal, xp_assert_close, xp_assert_equal,
)
from scipy.signal import (dlsim, dstep, dimpulse, tf2zpk, lti, dlti,
StateSpace, TransferFunction, ZerosPolesGain,
dfreqresp, dbode, BadCoefficients)
class TestDLTI:
def test_dlsim(self):
a = np.asarray([[0.9, 0.1], [-0.2, 0.9]])
b = np.asarray([[0.4, 0.1, -0.1], [0.0, 0.05, 0.0]])
c = np.asarray([[0.1, 0.3]])
d = np.asarray([[0.0, -0.1, 0.0]])
dt = 0.5
# Create an input matrix with inputs down the columns (3 cols) and its
# respective time input vector
u = np.hstack((np.linspace(0, 4.0, num=5)[:, np.newaxis],
np.full((5, 1), 0.01),
np.full((5, 1), -0.002)))
t_in = np.linspace(0, 2.0, num=5)
# Define the known result
yout_truth = np.array([[-0.001,
-0.00073,
0.039446,
0.0915387,
0.13195948]]).T
xout_truth = np.asarray([[0, 0],
[0.0012, 0.0005],
[0.40233, 0.00071],
[1.163368, -0.079327],
[2.2402985, -0.3035679]])
tout, yout, xout = dlsim((a, b, c, d, dt), u, t_in)
assert_array_almost_equal(yout_truth, yout)
assert_array_almost_equal(xout_truth, xout)
assert_array_almost_equal(t_in, tout)
# Make sure input with single-dimension doesn't raise error
dlsim((1, 2, 3), 4)
# Interpolated control - inputs should have different time steps
# than the discrete model uses internally
u_sparse = u[[0, 4], :]
t_sparse = np.asarray([0.0, 2.0])
tout, yout, xout = dlsim((a, b, c, d, dt), u_sparse, t_sparse)
assert_array_almost_equal(yout_truth, yout)
assert_array_almost_equal(xout_truth, xout)
assert len(tout) == len(yout)
# Transfer functions (assume dt = 0.5)
num = np.asarray([1.0, -0.1])
den = np.asarray([0.3, 1.0, 0.2])
yout_truth = np.array([[0.0,
0.0,
3.33333333333333,
-4.77777777777778,
23.0370370370370]]).T
# Assume use of the first column of the control input built earlier
tout, yout = dlsim((num, den, 0.5), u[:, 0], t_in)
assert_array_almost_equal(yout, yout_truth)
assert_array_almost_equal(t_in, tout)
# Retest the same with a 1-D input vector
uflat = np.asarray(u[:, 0])
uflat = uflat.reshape((5,))
tout, yout = dlsim((num, den, 0.5), uflat, t_in)
assert_array_almost_equal(yout, yout_truth)
assert_array_almost_equal(t_in, tout)
# zeros-poles-gain representation
zd = np.array([0.5, -0.5])
pd = np.array([1.j / np.sqrt(2), -1.j / np.sqrt(2)])
k = 1.0
yout_truth = np.array([[0.0, 1.0, 2.0, 2.25, 2.5]]).T
tout, yout = dlsim((zd, pd, k, 0.5), u[:, 0], t_in)
assert_array_almost_equal(yout, yout_truth)
assert_array_almost_equal(t_in, tout)
# Raise an error for continuous-time systems
system = lti([1], [1, 1])
assert_raises(AttributeError, dlsim, system, u)
def test_dstep(self):
a = np.asarray([[0.9, 0.1], [-0.2, 0.9]])
b = np.asarray([[0.4, 0.1, -0.1], [0.0, 0.05, 0.0]])
c = np.asarray([[0.1, 0.3]])
d = np.asarray([[0.0, -0.1, 0.0]])
dt = 0.5
# Because b.shape[1] == 3, dstep should result in a tuple of three
# result vectors
yout_step_truth = (np.asarray([0.0, 0.04, 0.052, 0.0404, 0.00956,
-0.036324, -0.093318, -0.15782348,
-0.226628324, -0.2969374948]),
np.asarray([-0.1, -0.075, -0.058, -0.04815,
-0.04453, -0.0461895, -0.0521812,
-0.061588875, -0.073549579,
-0.08727047595]),
np.asarray([0.0, -0.01, -0.013, -0.0101, -0.00239,
0.009081, 0.0233295, 0.03945587,
0.056657081, 0.0742343737]))
tout, yout = dstep((a, b, c, d, dt), n=10)
assert len(yout) == 3
for i in range(0, len(yout)):
assert yout[i].shape[0] == 10
assert_array_almost_equal(yout[i].flatten(), yout_step_truth[i])
# Check that the other two inputs (tf, zpk) will work as well
tfin = ([1.0], [1.0, 1.0], 0.5)
yout_tfstep = np.asarray([0.0, 1.0, 0.0])
tout, yout = dstep(tfin, n=3)
assert len(yout) == 1
assert_array_almost_equal(yout[0].flatten(), yout_tfstep)
zpkin = tf2zpk(tfin[0], tfin[1]) + (0.5,)
tout, yout = dstep(zpkin, n=3)
assert len(yout) == 1
assert_array_almost_equal(yout[0].flatten(), yout_tfstep)
# Raise an error for continuous-time systems
system = lti([1], [1, 1])
assert_raises(AttributeError, dstep, system)
def test_dimpulse(self):
a = np.asarray([[0.9, 0.1], [-0.2, 0.9]])
b = np.asarray([[0.4, 0.1, -0.1], [0.0, 0.05, 0.0]])
c = np.asarray([[0.1, 0.3]])
d = np.asarray([[0.0, -0.1, 0.0]])
dt = 0.5
# Because b.shape[1] == 3, dimpulse should result in a tuple of three
# result vectors
yout_imp_truth = (np.asarray([0.0, 0.04, 0.012, -0.0116, -0.03084,
-0.045884, -0.056994, -0.06450548,
-0.068804844, -0.0703091708]),
np.asarray([-0.1, 0.025, 0.017, 0.00985, 0.00362,
-0.0016595, -0.0059917, -0.009407675,
-0.011960704, -0.01372089695]),
np.asarray([0.0, -0.01, -0.003, 0.0029, 0.00771,
0.011471, 0.0142485, 0.01612637,
0.017201211, 0.0175772927]))
tout, yout = dimpulse((a, b, c, d, dt), n=10)
assert len(yout) == 3
for i in range(0, len(yout)):
assert yout[i].shape[0] == 10
assert_array_almost_equal(yout[i].flatten(), yout_imp_truth[i])
# Check that the other two inputs (tf, zpk) will work as well
tfin = ([1.0], [1.0, 1.0], 0.5)
yout_tfimpulse = np.asarray([0.0, 1.0, -1.0])
tout, yout = dimpulse(tfin, n=3)
assert len(yout) == 1
assert_array_almost_equal(yout[0].flatten(), yout_tfimpulse)
zpkin = tf2zpk(tfin[0], tfin[1]) + (0.5,)
tout, yout = dimpulse(zpkin, n=3)
assert len(yout) == 1
assert_array_almost_equal(yout[0].flatten(), yout_tfimpulse)
# Raise an error for continuous-time systems
system = lti([1], [1, 1])
assert_raises(AttributeError, dimpulse, system)
def test_dlsim_trivial(self):
a = np.array([[0.0]])
b = np.array([[0.0]])
c = np.array([[0.0]])
d = np.array([[0.0]])
n = 5
u = np.zeros(n).reshape(-1, 1)
tout, yout, xout = dlsim((a, b, c, d, 1), u)
xp_assert_equal(tout, np.arange(float(n)))
xp_assert_equal(yout, np.zeros((n, 1)))
xp_assert_equal(xout, np.zeros((n, 1)))
def test_dlsim_simple1d(self):
a = np.array([[0.5]])
b = np.array([[0.0]])
c = np.array([[1.0]])
d = np.array([[0.0]])
n = 5
u = np.zeros(n).reshape(-1, 1)
tout, yout, xout = dlsim((a, b, c, d, 1), u, x0=1)
xp_assert_equal(tout, np.arange(float(n)))
expected = (0.5 ** np.arange(float(n))).reshape(-1, 1)
xp_assert_equal(yout, expected)
xp_assert_equal(xout, expected)
def test_dlsim_simple2d(self):
lambda1 = 0.5
lambda2 = 0.25
a = np.array([[lambda1, 0.0],
[0.0, lambda2]])
b = np.array([[0.0],
[0.0]])
c = np.array([[1.0, 0.0],
[0.0, 1.0]])
d = np.array([[0.0],
[0.0]])
n = 5
u = np.zeros(n).reshape(-1, 1)
tout, yout, xout = dlsim((a, b, c, d, 1), u, x0=1)
xp_assert_equal(tout, np.arange(float(n)))
# The analytical solution:
expected = (np.array([lambda1, lambda2]) **
np.arange(float(n)).reshape(-1, 1))
xp_assert_equal(yout, expected)
xp_assert_equal(xout, expected)
def test_more_step_and_impulse(self):
lambda1 = 0.5
lambda2 = 0.75
a = np.array([[lambda1, 0.0],
[0.0, lambda2]])
b = np.array([[1.0, 0.0],
[0.0, 1.0]])
c = np.array([[1.0, 1.0]])
d = np.array([[0.0, 0.0]])
n = 10
# Check a step response.
ts, ys = dstep((a, b, c, d, 1), n=n)
# Create the exact step response.
stp0 = (1.0 / (1 - lambda1)) * (1.0 - lambda1 ** np.arange(n))
stp1 = (1.0 / (1 - lambda2)) * (1.0 - lambda2 ** np.arange(n))
xp_assert_close(ys[0][:, 0], stp0)
xp_assert_close(ys[1][:, 0], stp1)
# Check an impulse response with an initial condition.
x0 = np.array([1.0, 1.0])
ti, yi = dimpulse((a, b, c, d, 1), n=n, x0=x0)
# Create the exact impulse response.
imp = (np.array([lambda1, lambda2]) **
np.arange(-1, n + 1).reshape(-1, 1))
imp[0, :] = 0.0
# Analytical solution to impulse response
y0 = imp[:n, 0] + np.dot(imp[1:n + 1, :], x0)
y1 = imp[:n, 1] + np.dot(imp[1:n + 1, :], x0)
xp_assert_close(yi[0][:, 0], y0)
xp_assert_close(yi[1][:, 0], y1)
# Check that dt=0.1, n=3 gives 3 time values.
system = ([1.0], [1.0, -0.5], 0.1)
t, (y,) = dstep(system, n=3)
xp_assert_close(t, [0, 0.1, 0.2])
xp_assert_equal(y.T, [[0, 1.0, 1.5]])
t, (y,) = dimpulse(system, n=3)
xp_assert_close(t, [0, 0.1, 0.2])
xp_assert_equal(y.T, [[0, 1, 0.5]])
class TestDlti:
def test_dlti_instantiation(self):
# Test that lti can be instantiated.
dt = 0.05
# TransferFunction
s = dlti([1], [-1], dt=dt)
assert isinstance(s, TransferFunction)
assert isinstance(s, dlti)
assert not isinstance(s, lti)
assert s.dt == dt
# ZerosPolesGain
s = dlti(np.array([]), np.array([-1]), 1, dt=dt)
assert isinstance(s, ZerosPolesGain)
assert isinstance(s, dlti)
assert not isinstance(s, lti)
assert s.dt == dt
# StateSpace
s = dlti([1], [-1], 1, 3, dt=dt)
assert isinstance(s, StateSpace)
assert isinstance(s, dlti)
assert not isinstance(s, lti)
assert s.dt == dt
# Number of inputs
assert_raises(ValueError, dlti, 1)
assert_raises(ValueError, dlti, 1, 1, 1, 1, 1)
class TestStateSpaceDisc:
def test_initialization(self):
# Check that all initializations work
dt = 0.05
StateSpace(1, 1, 1, 1, dt=dt)
StateSpace([1], [2], [3], [4], dt=dt)
StateSpace(np.array([[1, 2], [3, 4]]), np.array([[1], [2]]),
np.array([[1, 0]]), np.array([[0]]), dt=dt)
StateSpace(1, 1, 1, 1, dt=True)
def test_conversion(self):
# Check the conversion functions
s = StateSpace(1, 2, 3, 4, dt=0.05)
assert isinstance(s.to_ss(), StateSpace)
assert isinstance(s.to_tf(), TransferFunction)
assert isinstance(s.to_zpk(), ZerosPolesGain)
# Make sure copies work
assert StateSpace(s) is not s
assert s.to_ss() is not s
def test_properties(self):
# Test setters/getters for cross class properties.
# This implicitly tests to_tf() and to_zpk()
# Getters
s = StateSpace(1, 1, 1, 1, dt=0.05)
xp_assert_equal(s.poles, [1.])
xp_assert_equal(s.zeros, [0.])
class TestTransferFunction:
def test_initialization(self):
# Check that all initializations work
dt = 0.05
TransferFunction(1, 1, dt=dt)
TransferFunction([1], [2], dt=dt)
TransferFunction(np.array([1]), np.array([2]), dt=dt)
TransferFunction(1, 1, dt=True)
def test_conversion(self):
# Check the conversion functions
s = TransferFunction([1, 0], [1, -1], dt=0.05)
assert isinstance(s.to_ss(), StateSpace)
assert isinstance(s.to_tf(), TransferFunction)
assert isinstance(s.to_zpk(), ZerosPolesGain)
# Make sure copies work
assert TransferFunction(s) is not s
assert s.to_tf() is not s
def test_properties(self):
# Test setters/getters for cross class properties.
# This implicitly tests to_ss() and to_zpk()
# Getters
s = TransferFunction([1, 0], [1, -1], dt=0.05)
xp_assert_equal(s.poles, [1.])
xp_assert_equal(s.zeros, [0.])
class TestZerosPolesGain:
def test_initialization(self):
# Check that all initializations work
dt = 0.05
ZerosPolesGain(1, 1, 1, dt=dt)
ZerosPolesGain([1], [2], 1, dt=dt)
ZerosPolesGain(np.array([1]), np.array([2]), 1, dt=dt)
ZerosPolesGain(1, 1, 1, dt=True)
def test_conversion(self):
# Check the conversion functions
s = ZerosPolesGain(1, 2, 3, dt=0.05)
assert isinstance(s.to_ss(), StateSpace)
assert isinstance(s.to_tf(), TransferFunction)
assert isinstance(s.to_zpk(), ZerosPolesGain)
# Make sure copies work
assert ZerosPolesGain(s) is not s
assert s.to_zpk() is not s
class Test_dfreqresp:
def test_manual(self):
# Test dfreqresp() real part calculation (manual sanity check).
# 1st order low-pass filter: H(z) = 1 / (z - 0.2),
system = TransferFunction(1, [1, -0.2], dt=0.1)
w = [0.1, 1, 10]
w, H = dfreqresp(system, w=w)
# test real
expected_re = [1.2383, 0.4130, -0.7553]
assert_almost_equal(H.real, expected_re, decimal=4)
# test imag
expected_im = [-0.1555, -1.0214, 0.3955]
assert_almost_equal(H.imag, expected_im, decimal=4)
def test_auto(self):
# Test dfreqresp() real part calculation.
# 1st order low-pass filter: H(z) = 1 / (z - 0.2),
system = TransferFunction(1, [1, -0.2], dt=0.1)
w = [0.1, 1, 10, 100]
w, H = dfreqresp(system, w=w)
jw = np.exp(w * 1j)
y = np.polyval(system.num, jw) / np.polyval(system.den, jw)
# test real
expected_re = y.real
assert_almost_equal(H.real, expected_re)
# test imag
expected_im = y.imag
assert_almost_equal(H.imag, expected_im)
def test_freq_range(self):
# Test that freqresp() finds a reasonable frequency range.
# 1st order low-pass filter: H(z) = 1 / (z - 0.2),
# Expected range is from 0.01 to 10.
system = TransferFunction(1, [1, -0.2], dt=0.1)
n = 10
expected_w = np.linspace(0, np.pi, 10, endpoint=False)
w, H = dfreqresp(system, n=n)
assert_almost_equal(w, expected_w)
def test_pole_one(self):
# Test that freqresp() doesn't fail on a system with a pole at 0.
# integrator, pole at zero: H(s) = 1 / s
system = TransferFunction([1], [1, -1], dt=0.1)
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, message="divide by zero")
sup.filter(RuntimeWarning, message="invalid value encountered")
w, H = dfreqresp(system, n=2)
assert w[0] == 0. # a fail would give not-a-number
def test_error(self):
# Raise an error for continuous-time systems
system = lti([1], [1, 1])
assert_raises(AttributeError, dfreqresp, system)
def test_from_state_space(self):
# H(z) = 2 / z^3 - 0.5 * z^2
system_TF = dlti([2], [1, -0.5, 0, 0])
A = np.array([[0.5, 0, 0],
[1, 0, 0],
[0, 1, 0]])
B = np.array([[1, 0, 0]]).T
C = np.array([[0, 0, 2]])
D = 0
system_SS = dlti(A, B, C, D)
w = 10.0**np.arange(-3,0,.5)
with suppress_warnings() as sup:
sup.filter(BadCoefficients)
w1, H1 = dfreqresp(system_TF, w=w)
w2, H2 = dfreqresp(system_SS, w=w)
assert_almost_equal(H1, H2)
def test_from_zpk(self):
# 1st order low-pass filter: H(s) = 0.3 / (z - 0.2),
system_ZPK = dlti([],[0.2],0.3)
system_TF = dlti(0.3, [1, -0.2])
w = [0.1, 1, 10, 100]
w1, H1 = dfreqresp(system_ZPK, w=w)
w2, H2 = dfreqresp(system_TF, w=w)
assert_almost_equal(H1, H2)
class Test_bode:
def test_manual(self):
# Test bode() magnitude calculation (manual sanity check).
# 1st order low-pass filter: H(s) = 0.3 / (z - 0.2),
dt = 0.1
system = TransferFunction(0.3, [1, -0.2], dt=dt)
w = [0.1, 0.5, 1, np.pi]
w2, mag, phase = dbode(system, w=w)
# Test mag
expected_mag = [-8.5329, -8.8396, -9.6162, -12.0412]
assert_almost_equal(mag, expected_mag, decimal=4)
# Test phase
expected_phase = [-7.1575, -35.2814, -67.9809, -180.0000]
assert_almost_equal(phase, expected_phase, decimal=4)
# Test frequency
xp_assert_equal(np.array(w) / dt, w2)
def test_auto(self):
# Test bode() magnitude calculation.
# 1st order low-pass filter: H(s) = 0.3 / (z - 0.2),
system = TransferFunction(0.3, [1, -0.2], dt=0.1)
w = np.array([0.1, 0.5, 1, np.pi])
w2, mag, phase = dbode(system, w=w)
jw = np.exp(w * 1j)
y = np.polyval(system.num, jw) / np.polyval(system.den, jw)
# Test mag
expected_mag = 20.0 * np.log10(abs(y))
assert_almost_equal(mag, expected_mag)
# Test phase
expected_phase = np.rad2deg(np.angle(y))
assert_almost_equal(phase, expected_phase)
def test_range(self):
# Test that bode() finds a reasonable frequency range.
# 1st order low-pass filter: H(s) = 0.3 / (z - 0.2),
dt = 0.1
system = TransferFunction(0.3, [1, -0.2], dt=0.1)
n = 10
# Expected range is from 0.01 to 10.
expected_w = np.linspace(0, np.pi, n, endpoint=False) / dt
w, mag, phase = dbode(system, n=n)
assert_almost_equal(w, expected_w)
def test_pole_one(self):
# Test that freqresp() doesn't fail on a system with a pole at 0.
# integrator, pole at zero: H(s) = 1 / s
system = TransferFunction([1], [1, -1], dt=0.1)
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, message="divide by zero")
sup.filter(RuntimeWarning, message="invalid value encountered")
w, mag, phase = dbode(system, n=2)
assert w[0] == 0. # a fail would give not-a-number
def test_imaginary(self):
# bode() should not fail on a system with pure imaginary poles.
# The test passes if bode doesn't raise an exception.
system = TransferFunction([1], [1, 0, 100], dt=0.1)
dbode(system, n=2)
def test_error(self):
# Raise an error for continuous-time systems
system = lti([1], [1, 1])
assert_raises(AttributeError, dbode, system)
class TestTransferFunctionZConversion:
"""Test private conversions between 'z' and 'z**-1' polynomials."""
def test_full(self):
# Numerator and denominator same order
num = np.asarray([2.0, 3, 4])
den = np.asarray([5.0, 6, 7])
num2, den2 = TransferFunction._z_to_zinv(num, den)
xp_assert_equal(num, num2)
xp_assert_equal(den, den2)
num2, den2 = TransferFunction._zinv_to_z(num, den)
xp_assert_equal(num, num2)
xp_assert_equal(den, den2)
def test_numerator(self):
# Numerator lower order than denominator
num = np.asarray([2.0, 3])
den = np.asarray([50, 6, 7])
num2, den2 = TransferFunction._z_to_zinv(num, den)
xp_assert_equal([0.0, 2, 3], num2)
xp_assert_equal(den, den2)
num2, den2 = TransferFunction._zinv_to_z(num, den)
xp_assert_equal([2.0, 3, 0], num2)
xp_assert_equal(den, den2)
def test_denominator(self):
# Numerator higher order than denominator
num = np.asarray([2., 3, 4])
den = np.asarray([5.0, 6])
num2, den2 = TransferFunction._z_to_zinv(num, den)
xp_assert_equal(num, num2)
xp_assert_equal([0.0, 5, 6], den2)
num2, den2 = TransferFunction._zinv_to_z(num, den)
xp_assert_equal(num, num2)
xp_assert_equal([5.0, 6, 0], den2)

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,851 @@
import math
import numpy as np
from numpy.testing import assert_warns
from pytest import raises as assert_raises
import pytest
import scipy._lib.array_api_extra as xpx
from scipy._lib._array_api import (
xp_assert_close, xp_assert_equal, assert_almost_equal, assert_array_almost_equal,
array_namespace, xp_default_dtype
)
from scipy.fft import fft, fft2
from scipy.signal import (kaiser_beta, kaiser_atten, kaiserord,
firwin, firwin2, freqz, remez, firls, minimum_phase, convolve2d, firwin_2d
)
skip_xp_backends = pytest.mark.skip_xp_backends
xfail_xp_backends = pytest.mark.xfail_xp_backends
def test_kaiser_beta():
b = kaiser_beta(58.7)
assert_almost_equal(b, 0.1102 * 50.0)
b = kaiser_beta(22.0)
assert_almost_equal(b, 0.5842 + 0.07886)
b = kaiser_beta(21.0)
assert b == 0.0
b = kaiser_beta(10.0)
assert b == 0.0
def test_kaiser_atten():
a = kaiser_atten(1, 1.0)
assert a == 7.95
a = kaiser_atten(2, 1/np.pi)
assert a == 2.285 + 7.95
def test_kaiserord():
assert_raises(ValueError, kaiserord, 1.0, 1.0)
numtaps, beta = kaiserord(2.285 + 7.95 - 0.001, 1/np.pi)
assert (numtaps, beta) == (2, 0.0)
class TestFirwin:
def check_response(self, h, expected_response, tol=.05):
xp = array_namespace(h)
N = h.shape[0]
alpha = 0.5 * (N-1)
m = xp.arange(0, N) - alpha # time indices of taps
for freq, expected in expected_response:
actual = abs(xp.sum(h * xp.exp(-1j * xp.pi * m * freq)))
mse = abs(actual - expected)**2
assert mse < tol, f'response not as expected, mse={mse:g} > {tol:g}'
def test_response(self, xp):
N = 51
f = .5
# increase length just to try even/odd
h = firwin(N, f) # low-pass from 0 to f
self.check_response(h, [(.25,1), (.75,0)])
h = firwin(N+1, f, window='nuttall') # specific window
self.check_response(h, [(.25,1), (.75,0)])
h = firwin(N+2, f, pass_zero=False) # stop from 0 to f --> high-pass
self.check_response(h, [(.25,0), (.75,1)])
f1, f2, f3, f4 = .2, .4, .6, .8
h = firwin(N+3, [f1, f2], pass_zero=False) # band-pass filter
self.check_response(h, [(.1,0), (.3,1), (.5,0)])
h = firwin(N+4, [f1, f2]) # band-stop filter
self.check_response(h, [(.1,1), (.3,0), (.5,1)])
h = firwin(N+5, [f1, f2, f3, f4], pass_zero=False, scale=False)
self.check_response(h, [(.1,0), (.3,1), (.5,0), (.7,1), (.9,0)])
h = firwin(N+6, [f1, f2, f3, f4]) # multiband filter
self.check_response(h, [(.1,1), (.3,0), (.5,1), (.7,0), (.9,1)])
h = firwin(N+7, 0.1, width=.03) # low-pass
self.check_response(h, [(.05,1), (.75,0)])
h = firwin(N+8, 0.1, pass_zero=False) # high-pass
self.check_response(h, [(.05,0), (.75,1)])
def mse(self, h, bands):
"""Compute mean squared error versus ideal response across frequency
band.
h -- coefficients
bands -- list of (left, right) tuples relative to 1==Nyquist of
passbands
"""
w, H = freqz(h, worN=1024)
f = w/np.pi
passIndicator = np.zeros(len(w), bool)
for left, right in bands:
passIndicator |= (f >= left) & (f < right)
Hideal = np.where(passIndicator, 1, 0)
mse = np.mean(abs(abs(H)-Hideal)**2)
return mse
def test_scaling(self, xp):
"""
For one lowpass, bandpass, and highpass example filter, this test
checks two things:
- the mean squared error over the frequency domain of the unscaled
filter is smaller than the scaled filter (true for rectangular
window)
- the response of the scaled filter is exactly unity at the center
of the first passband
"""
N = 11
cases = [
([.5], True, (0, 1)),
([0.2, .6], False, (.4, 1)),
([.5], False, (1, 1)),
]
for cutoff, pass_zero, expected_response in cases:
h = firwin(N, cutoff, scale=False, pass_zero=pass_zero, window='ones')
hs = firwin(N, cutoff, scale=True, pass_zero=pass_zero, window='ones')
if len(cutoff) == 1:
if pass_zero:
cutoff = [0] + cutoff
else:
cutoff = cutoff + [1]
msg = 'least squares violation'
assert self.mse(h, [cutoff]) < self.mse(hs, [cutoff]), msg
self.check_response(hs, [expected_response], 1e-12)
def test_fs_validation(self):
with pytest.raises(ValueError, match="Sampling.*single scalar"):
firwin(51, .5, fs=np.array([10, 20]))
class TestFirWinMore:
"""Different author, different style, different tests..."""
def test_lowpass(self, xp):
width = 0.04
ntaps, beta = kaiserord(120, width)
cutoff = xp.asarray(0.5)
kwargs = dict(cutoff=cutoff, window=('kaiser', beta), scale=False)
taps = firwin(ntaps, **kwargs)
# Check the symmetry of taps.
assert_array_almost_equal(taps[:ntaps//2], xp.flip(taps)[:ntaps//2])
# Check the gain at a few samples where
# we know it should be approximately 0 or 1.
freq_samples = xp.asarray([0.0, 0.25, 0.5-width/2, 0.5+width/2, 0.75, 1.0])
freqs, response = freqz(taps, worN=xp.pi*freq_samples)
assert_array_almost_equal(
xp.abs(response),
xp.asarray([1.0, 1.0, 1.0, 0.0, 0.0, 0.0]), decimal=5
)
taps_str = firwin(ntaps, pass_zero='lowpass', **kwargs)
xp_assert_close(taps, taps_str)
def test_highpass(self, xp):
width = 0.04
ntaps, beta = kaiserord(120, width)
# Ensure that ntaps is odd.
ntaps |= 1
cutoff = xp.asarray(0.5)
kwargs = dict(cutoff=cutoff, window=('kaiser', beta), scale=False)
taps = firwin(ntaps, pass_zero=False, **kwargs)
# Check the symmetry of taps.
assert_array_almost_equal(taps[:ntaps//2], xp.flip(taps)[:ntaps//2])
# Check the gain at a few samples where
# we know it should be approximately 0 or 1.
freq_samples = xp.asarray([0.0, 0.25, 0.5 - width/2, 0.5 + width/2, 0.75, 1.0])
freqs, response = freqz(taps, worN=np.pi*freq_samples)
assert_array_almost_equal(xp.abs(response),
xp.asarray([0.0, 0.0, 0.0, 1.0, 1.0, 1.0]), decimal=5)
taps_str = firwin(ntaps, pass_zero='highpass', **kwargs)
xp_assert_close(taps, taps_str)
def test_bandpass(self, xp):
width = 0.04
ntaps, beta = kaiserord(120, width)
kwargs = dict(
cutoff=xp.asarray([0.3, 0.7]), window=('kaiser', beta), scale=False
)
taps = firwin(ntaps, pass_zero=False, **kwargs)
# Check the symmetry of taps.
assert_array_almost_equal(taps[:ntaps//2], xp.flip(taps)[:ntaps//2])
# Check the gain at a few samples where
# we know it should be approximately 0 or 1.
freq_samples = xp.asarray([0.0, 0.2, 0.3 - width/2, 0.3 + width/2, 0.5,
0.7 - width/2, 0.7 + width/2, 0.8, 1.0])
freqs, response = freqz(taps, worN=np.pi*freq_samples)
assert_array_almost_equal(xp.abs(response),
xp.asarray([0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0]), decimal=5)
taps_str = firwin(ntaps, pass_zero='bandpass', **kwargs)
xp_assert_close(taps, taps_str)
def test_bandstop_multi(self, xp):
width = 0.04
ntaps, beta = kaiserord(120, width)
kwargs = dict(cutoff=xp.asarray([0.2, 0.5, 0.8]), window=('kaiser', beta),
scale=False)
taps = firwin(ntaps, **kwargs)
# Check the symmetry of taps.
assert_array_almost_equal(taps[:ntaps//2], xp.flip(taps)[:ntaps//2])
# Check the gain at a few samples where
# we know it should be approximately 0 or 1.
freq_samples = xp.asarray([0.0, 0.1, 0.2 - width/2, 0.2 + width/2, 0.35,
0.5 - width/2, 0.5 + width/2, 0.65,
0.8 - width/2, 0.8 + width/2, 0.9, 1.0])
freqs, response = freqz(taps, worN=np.pi*freq_samples)
assert_array_almost_equal(
xp.abs(response),
xp.asarray([1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0]),
decimal=5
)
taps_str = firwin(ntaps, pass_zero='bandstop', **kwargs)
xp_assert_close(taps, taps_str)
def test_fs_nyq(self, xp):
"""Test the fs and nyq keywords."""
nyquist = 1000
width = 40.0
relative_width = width/nyquist
ntaps, beta = kaiserord(120, relative_width)
taps = firwin(ntaps, cutoff=xp.asarray([300, 700]), window=('kaiser', beta),
pass_zero=False, scale=False, fs=2*nyquist)
# Check the symmetry of taps.
assert_array_almost_equal(taps[:ntaps//2], xp.flip(taps)[:ntaps//2])
# Check the gain at a few samples where
# we know it should be approximately 0 or 1.
freq_samples = xp.asarray([0.0, 200, 300 - width/2, 300 + width/2, 500,
700 - width/2, 700 + width/2, 800, 1000])
freqs, response = freqz(taps, worN=np.pi*freq_samples/nyquist)
assert_array_almost_equal(xp.abs(response),
xp.asarray([0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0]), decimal=5)
def test_array_cutoff(self, xp):
taps = firwin(3, xp.asarray([.1, .2]))
# smoke test against the value computed by scipy==1.5.2
xp_assert_close(
taps, xp.asarray([-0.00801395, 1.0160279, -0.00801395]), atol=1e-8
)
def test_bad_cutoff(self):
"""Test that invalid cutoff argument raises ValueError."""
# cutoff values must be greater than 0 and less than 1.
assert_raises(ValueError, firwin, 99, -0.5)
assert_raises(ValueError, firwin, 99, 1.5)
# Don't allow 0 or 1 in cutoff.
assert_raises(ValueError, firwin, 99, [0, 0.5])
assert_raises(ValueError, firwin, 99, [0.5, 1])
# cutoff values must be strictly increasing.
assert_raises(ValueError, firwin, 99, [0.1, 0.5, 0.2])
assert_raises(ValueError, firwin, 99, [0.1, 0.5, 0.5])
# Must have at least one cutoff value.
assert_raises(ValueError, firwin, 99, [])
# 2D array not allowed.
assert_raises(ValueError, firwin, 99, [[0.1, 0.2],[0.3, 0.4]])
# cutoff values must be less than nyq.
assert_raises(ValueError, firwin, 99, 50.0, fs=80)
assert_raises(ValueError, firwin, 99, [10, 20, 30], fs=50)
def test_even_highpass_raises_value_error(self):
"""Test that attempt to create a highpass filter with an even number
of taps raises a ValueError exception."""
assert_raises(ValueError, firwin, 40, 0.5, pass_zero=False)
assert_raises(ValueError, firwin, 40, [.25, 0.5])
def test_bad_pass_zero(self):
"""Test degenerate pass_zero cases."""
with assert_raises(ValueError, match="^Parameter pass_zero='foo' not in "):
firwin(41, 0.5, pass_zero='foo')
with assert_raises(ValueError, match="^Parameter pass_zero=1.0 not in "):
firwin(41, 0.5, pass_zero=1.)
for pass_zero in ('lowpass', 'highpass'):
with assert_raises(ValueError, match='cutoff must have one'):
firwin(41, [0.5, 0.6], pass_zero=pass_zero)
for pass_zero in ('bandpass', 'bandstop'):
with assert_raises(ValueError, match='must have at least two'):
firwin(41, [0.5], pass_zero=pass_zero)
def test_fs_validation(self):
with pytest.raises(ValueError, match="Sampling.*single scalar"):
firwin2(51, .5, 1, fs=np.array([10, 20]))
@skip_xp_backends(cpu_only=True, reason="firwin2 uses np.interp")
class TestFirwin2:
def test_invalid_args(self):
# `freq` and `gain` have different lengths.
with assert_raises(ValueError, match='must be of same length'):
firwin2(50, [0, 0.5, 1], [0.0, 1.0])
# `nfreqs` is less than `ntaps`.
with assert_raises(ValueError, match='ntaps must be less than nfreqs'):
firwin2(50, [0, 0.5, 1], [0.0, 1.0, 1.0], nfreqs=33)
# Decreasing value in `freq`
with assert_raises(ValueError, match='must be nondecreasing'):
firwin2(50, [0, 0.5, 0.4, 1.0], [0, .25, .5, 1.0])
# Value in `freq` repeated more than once.
with assert_raises(ValueError, match='must not occur more than twice'):
firwin2(50, [0, .1, .1, .1, 1.0], [0.0, 0.5, 0.75, 1.0, 1.0])
# `freq` does not start at 0.0.
with assert_raises(ValueError, match='start with 0'):
firwin2(50, [0.5, 1.0], [0.0, 1.0])
# `freq` does not end at fs/2.
with assert_raises(ValueError, match='end with fs/2'):
firwin2(50, [0.0, 0.5], [0.0, 1.0])
# Value 0 is repeated in `freq`
with assert_raises(ValueError, match='0 must not be repeated'):
firwin2(50, [0.0, 0.0, 0.5, 1.0], [1.0, 1.0, 0.0, 0.0])
# Value fs/2 is repeated in `freq`
with assert_raises(ValueError, match='fs/2 must not be repeated'):
firwin2(50, [0.0, 0.5, 1.0, 1.0], [1.0, 1.0, 0.0, 0.0])
# Value in `freq` that is too close to a repeated number
with assert_raises(ValueError, match='cannot contain numbers '
'that are too close'):
firwin2(50, [0.0, 0.5 - np.finfo(float).eps * 0.5, 0.5, 0.5, 1.0],
[1.0, 1.0, 1.0, 0.0, 0.0])
# Type II filter, but the gain at nyquist frequency is not zero.
with assert_raises(ValueError, match='Type II filter'):
firwin2(16, [0.0, 0.5, 1.0], [0.0, 1.0, 1.0])
# Type III filter, but the gains at nyquist and zero rate are not zero.
with assert_raises(ValueError, match='Type III filter'):
firwin2(17, [0.0, 0.5, 1.0], [0.0, 1.0, 1.0], antisymmetric=True)
with assert_raises(ValueError, match='Type III filter'):
firwin2(17, [0.0, 0.5, 1.0], [1.0, 1.0, 0.0], antisymmetric=True)
with assert_raises(ValueError, match='Type III filter'):
firwin2(17, [0.0, 0.5, 1.0], [1.0, 1.0, 1.0], antisymmetric=True)
# Type IV filter, but the gain at zero rate is not zero.
with assert_raises(ValueError, match='Type IV filter'):
firwin2(16, [0.0, 0.5, 1.0], [1.0, 1.0, 0.0], antisymmetric=True)
def test01(self, xp):
width = 0.04
beta = 12.0
ntaps = 400
# Filter is 1 from w=0 to w=0.5, then decreases linearly from 1 to 0 as w
# increases from w=0.5 to w=1 (w=1 is the Nyquist frequency).
freq = xp.asarray([0.0, 0.5, 1.0])
gain = xp.asarray([1.0, 1.0, 0.0])
taps = firwin2(ntaps, freq, gain, window=('kaiser', beta))
freq_samples = xp.asarray([0.0, 0.25, 0.5 - width/2, 0.5 + width/2,
0.75, 1.0 - width/2])
freqs, response = freqz(taps, worN=np.pi*freq_samples)
freqs, response = xp.asarray(freqs), xp.asarray(response)
assert_array_almost_equal(
xp.abs(response),
xp.asarray([1.0, 1.0, 1.0, 1.0 - width, 0.5, width]), decimal=5
)
@skip_xp_backends("jax.numpy", reason="immutable arrays")
def test02(self, xp):
width = 0.04
beta = 12.0
# ntaps must be odd for positive gain at Nyquist.
ntaps = 401
# An ideal highpass filter.
freq = xp.asarray([0.0, 0.5, 0.5, 1.0])
gain = xp.asarray([0.0, 0.0, 1.0, 1.0])
taps = firwin2(ntaps, freq, gain, window=('kaiser', beta))
freq_samples = np.array([0.0, 0.25, 0.5 - width, 0.5 + width, 0.75, 1.0])
freqs, response = freqz(taps, worN=np.pi*freq_samples)
freqs, response = xp.asarray(freqs), xp.asarray(response)
assert_array_almost_equal(
xp.abs(response),
xp.asarray([0.0, 0.0, 0.0, 1.0, 1.0, 1.0]), decimal=5
)
@skip_xp_backends("jax.numpy", reason="immutable arrays")
def test03(self, xp):
width = 0.02
ntaps, beta = kaiserord(120, width)
# ntaps must be odd for positive gain at Nyquist.
ntaps = int(ntaps) | 1
freq = xp.asarray([0.0, 0.4, 0.4, 0.5, 0.5, 1.0])
gain = xp.asarray([1.0, 1.0, 0.0, 0.0, 1.0, 1.0])
taps = firwin2(ntaps, freq, gain, window=('kaiser', beta))
freq_samples = np.array([0.0, 0.4 - width, 0.4 + width, 0.45,
0.5 - width, 0.5 + width, 0.75, 1.0])
freqs, response = freqz(taps, worN=np.pi*freq_samples)
freqs, response = xp.asarray(freqs), xp.asarray(response)
assert_array_almost_equal(
xp.abs(response),
xp.asarray([1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0]), decimal=5
)
@skip_xp_backends("jax.numpy", reason="immutable arrays")
def test04(self, xp):
"""Test firwin2 when window=None."""
ntaps = 5
# Ideal lowpass: gain is 1 on [0,0.5], and 0 on [0.5, 1.0]
freq = xp.asarray([0.0, 0.5, 0.5, 1.0])
gain = xp.asarray([1.0, 1.0, 0.0, 0.0])
taps = firwin2(ntaps, freq, gain, window=None, nfreqs=8193)
alpha = 0.5 * (ntaps - 1)
m = xp.arange(0, ntaps, dtype=freq.dtype) - alpha
h = 0.5 * xpx.sinc(0.5 * m)
assert_array_almost_equal(h, taps)
def test05(self, xp):
"""Test firwin2 for calculating Type IV filters"""
ntaps = 1500
freq = xp.asarray([0.0, 1.0])
gain = xp.asarray([0.0, 1.0])
taps = firwin2(ntaps, freq, gain, window=None, antisymmetric=True)
flip = array_namespace(freq).flip
dec = {'decimal': 4.5} if xp_default_dtype(xp) == xp.float32 else {}
assert_array_almost_equal(taps[: ntaps // 2], flip(-taps[ntaps // 2:]), **dec)
freqs, response = freqz(np.asarray(taps), worN=2048) # XXX convert freqz
assert_array_almost_equal(abs(xp.asarray(response)),
xp.asarray(freqs / np.pi), decimal=4)
@skip_xp_backends("jax.numpy", reason="immutable arrays")
def test06(self, xp):
"""Test firwin2 for calculating Type III filters"""
ntaps = 1501
freq = xp.asarray([0.0, 0.5, 0.55, 1.0])
gain = xp.asarray([0.0, 0.5, 0.0, 0.0])
taps = firwin2(ntaps, freq, gain, window=None, antisymmetric=True)
assert taps[ntaps // 2] == 0.0
flip = array_namespace(freq).flip
dec = {'decimal': 4.5} if xp_default_dtype(xp) == xp.float32 else {}
assert_array_almost_equal(taps[: ntaps // 2],
flip(-taps[ntaps // 2 + 1:]), **dec
)
freqs, response1 = freqz(np.asarray(taps), worN=2048) # XXX convert freqz
response1 = xp.asarray(response1)
response2 = xp.asarray(
np.interp(np.asarray(freqs) / np.pi, np.asarray(freq), np.asarray(gain))
)
assert_array_almost_equal(abs(response1), response2, decimal=3)
def test_fs_nyq(self, xp):
taps1 = firwin2(80, xp.asarray([0.0, 0.5, 1.0]), xp.asarray([1.0, 1.0, 0.0]))
taps2 = firwin2(80, xp.asarray([0.0, 30.0, 60.0]), xp.asarray([1.0, 1.0, 0.0]),
fs=120.0)
assert_array_almost_equal(taps1, taps2)
def test_tuple(self):
taps1 = firwin2(150, (0.0, 0.5, 0.5, 1.0), (1.0, 1.0, 0.0, 0.0))
taps2 = firwin2(150, [0.0, 0.5, 0.5, 1.0], [1.0, 1.0, 0.0, 0.0])
assert_array_almost_equal(taps1, taps2)
@skip_xp_backends("jax.numpy", reason="immutable arrays")
def test_input_modyfication(self, xp):
freq1 = xp.asarray([0.0, 0.5, 0.5, 1.0])
freq2 = xp.asarray(freq1)
firwin2(80, freq1, xp.asarray([1.0, 1.0, 0.0, 0.0]))
xp_assert_equal(freq1, freq2)
@skip_xp_backends(cpu_only=True)
class TestRemez:
def test_bad_args(self):
assert_raises(ValueError, remez, 11, [0.1, 0.4], [1], type='pooka')
def test_hilbert(self):
N = 11 # number of taps in the filter
a = 0.1 # width of the transition band
# design an unity gain hilbert bandpass filter from w to 0.5-w
h = remez(11, [a, 0.5-a], [1], type='hilbert')
# make sure the filter has correct # of taps
assert len(h) == N, "Number of Taps"
# make sure it is type III (anti-symmetric tap coefficients)
assert_array_almost_equal(h[:(N-1)//2], -h[:-(N-1)//2-1:-1])
# Since the requested response is symmetric, all even coefficients
# should be zero (or in this case really small)
assert (abs(h[1::2]) < 1e-15).all(), "Even Coefficients Equal Zero"
# now check the frequency response
w, H = freqz(h, 1)
f = w/2/np.pi
Hmag = abs(H)
# should have a zero at 0 and pi (in this case close to zero)
assert (Hmag[[0, -1]] < 0.02).all(), "Zero at zero and pi"
# check that the pass band is close to unity
idx = np.logical_and(f > a, f < 0.5-a)
assert (abs(Hmag[idx] - 1) < 0.015).all(), "Pass Band Close To Unity"
def test_compare(self, xp):
# test comparison to MATLAB
k = [0.024590270518440, -0.041314581814658, -0.075943803756711,
-0.003530911231040, 0.193140296954975, 0.373400753484939,
0.373400753484939, 0.193140296954975, -0.003530911231040,
-0.075943803756711, -0.041314581814658, 0.024590270518440]
h = remez(12, xp.asarray([0, 0.3, 0.5, 1]), xp.asarray([1, 0]), fs=2.)
atol_arg = {'atol': 1e-8} if xp_default_dtype(xp) == xp.float32 else {}
xp_assert_close(h, xp.asarray(k, dtype=xp.float64), **atol_arg)
h = [-0.038976016082299, 0.018704846485491, -0.014644062687875,
0.002879152556419, 0.016849978528150, -0.043276706138248,
0.073641298245579, -0.103908158578635, 0.129770906801075,
-0.147163447297124, 0.153302248456347, -0.147163447297124,
0.129770906801075, -0.103908158578635, 0.073641298245579,
-0.043276706138248, 0.016849978528150, 0.002879152556419,
-0.014644062687875, 0.018704846485491, -0.038976016082299]
atol_arg = {'atol': 3e-8} if xp_default_dtype(xp) == xp.float32 else {}
xp_assert_close(
remez(21, xp.asarray([0, 0.8, 0.9, 1]), xp.asarray([0, 1]), fs=2.),
xp.asarray(h, dtype=xp.float64), **atol_arg
)
def test_fs_validation(self):
with pytest.raises(ValueError, match="Sampling.*single scalar"):
remez(11, .1, 1, fs=np.array([10, 20]))
def test_gh_23266(self, xp):
bands = xp.asarray([0.0, 0.2, 0.3, 0.5])
desired = xp.asarray([1.0, 0.0])
weight = xp.asarray([1.0, 2.0])
remez(21, bands, desired, weight=weight)
@skip_xp_backends(cpu_only=True, reason="lstsq")
class TestFirls:
def test_bad_args(self):
# even numtaps
assert_raises(ValueError, firls, 10, [0.1, 0.2], [0, 0])
# odd bands
assert_raises(ValueError, firls, 11, [0.1, 0.2, 0.4], [0, 0, 0])
# len(bands) != len(desired)
assert_raises(ValueError, firls, 11, [0.1, 0.2, 0.3, 0.4], [0, 0, 0])
# non-monotonic bands
assert_raises(ValueError, firls, 11, [0.2, 0.1], [0, 0])
assert_raises(ValueError, firls, 11, [0.1, 0.2, 0.3, 0.3], [0] * 4)
assert_raises(ValueError, firls, 11, [0.3, 0.4, 0.1, 0.2], [0] * 4)
assert_raises(ValueError, firls, 11, [0.1, 0.3, 0.2, 0.4], [0] * 4)
# negative desired
assert_raises(ValueError, firls, 11, [0.1, 0.2], [-1, 1])
# len(weight) != len(pairs)
assert_raises(ValueError, firls, 11, [0.1, 0.2], [0, 0], weight=[1, 2])
# negative weight
assert_raises(ValueError, firls, 11, [0.1, 0.2], [0, 0], weight=[-1])
@skip_xp_backends("dask.array", reason="dask fancy indexing shape=(nan,)")
def test_firls(self, xp):
N = 11 # number of taps in the filter
a = 0.1 # width of the transition band
# design a halfband symmetric low-pass filter
h = firls(11, xp.asarray([0, a, 0.5 - a, 0.5]), xp.asarray([1, 1, 0, 0]),
fs=1.0)
# make sure the filter has correct # of taps
assert h.shape[0] == N
# make sure it is symmetric
midx = (N-1) // 2
flip = array_namespace(h).flip
assert_array_almost_equal(h[:midx], flip(h[midx+1:])) # h[:-midx-1:-1])
# make sure the center tap is 0.5
assert math.isclose(h[midx], 0.5, abs_tol=1e-8)
# For halfband symmetric, odd coefficients (except the center)
# should be zero (really small)
hodd = xp.stack((h[1:midx:2], h[-midx+1::2]))
assert_array_almost_equal(hodd, xp.zeros_like(hodd))
# now check the frequency response
w, H = freqz(np.asarray(h), 1)
w, H = xp.asarray(w), xp.asarray(H)
f = w/2/xp.pi
Hmag = xp.abs(H)
# check that the pass band is close to unity
idx = xp.logical_and(f > 0, f < a)
assert_array_almost_equal(Hmag[idx], xp.ones_like(Hmag[idx]), decimal=3)
# check that the stop band is close to zero
idx = xp.logical_and(f > 0.5 - a, f < 0.5)
assert_array_almost_equal(Hmag[idx], xp.zeros_like(Hmag[idx]), decimal=3)
def test_compare(self, xp):
# compare to OCTAVE output
taps = firls(9, xp.asarray([0, 0.5, 0.55, 1]),
xp.asarray([1, 1, 0, 0]), weight=xp.asarray([1, 2]))
# >> taps = firls(8, [0 0.5 0.55 1], [1 1 0 0], [1, 2]);
known_taps = [-6.26930101730182e-04, -1.03354450635036e-01,
-9.81576747564301e-03, 3.17271686090449e-01,
5.11409425599933e-01, 3.17271686090449e-01,
-9.81576747564301e-03, -1.03354450635036e-01,
-6.26930101730182e-04]
atol_arg = {'atol': 5e-8} if xp_default_dtype(xp) == xp.float32 else {}
known_taps = xp.asarray(known_taps, dtype=xp.float64)
xp_assert_close(taps, known_taps, **atol_arg)
# compare to MATLAB output
taps = firls(11, xp.asarray([0, 0.5, 0.5, 1]),
xp.asarray([1, 1, 0, 0]), weight=xp.asarray([1, 2]))
# >> taps = firls(10, [0 0.5 0.5 1], [1 1 0 0], [1, 2]);
known_taps = [
0.058545300496815, -0.014233383714318, -0.104688258464392,
0.012403323025279, 0.317930861136062, 0.488047220029700,
0.317930861136062, 0.012403323025279, -0.104688258464392,
-0.014233383714318, 0.058545300496815]
known_taps = xp.asarray(known_taps, dtype=xp.float64)
atol_arg = {'atol': 3e-8} if xp_default_dtype(xp) == xp.float32 else {}
xp_assert_close(taps, known_taps, **atol_arg)
# With linear changes:
taps = firls(7, xp.asarray((0, 1, 2, 3, 4, 5)),
xp.asarray([1, 0, 0, 1, 1, 0]), fs=20)
# >> taps = firls(6, [0, 0.1, 0.2, 0.3, 0.4, 0.5], [1, 0, 0, 1, 1, 0])
known_taps = [
1.156090832768218, -4.1385894727395849, 7.5288619164321826,
-8.5530572592947856, 7.5288619164321826, -4.1385894727395849,
1.156090832768218]
known_taps = xp.asarray(known_taps, dtype=xp.float64)
xp_assert_close(taps, known_taps)
def test_rank_deficient(self, xp):
# solve() runs but warns (only sometimes, so here we don't use match)
x = firls(21, xp.asarray([0, 0.1, 0.9, 1]), xp.asarray([1, 1, 0, 0]))
w, h = freqz(np.asarray(x), fs=2.)
w, h = map(xp.asarray, (w, h)) # XXX convert freqz
absh2 = xp.abs(h[:2])
xp_assert_close(absh2, xp.ones_like(absh2), atol=1e-5)
absh2 = xp.abs(h[-2:])
xp_assert_close(absh2, xp.zeros_like(absh2), atol=1e-6, rtol=1e-7)
# switch to pinvh (tolerances could be higher with longer
# filters, but using shorter ones is faster computationally and
# the idea is the same)
x = firls(101, xp.asarray([0, 0.01, 0.99, 1]), xp.asarray([1, 1, 0, 0]))
w, h = freqz(np.asarray(x), fs=2.)
w, h = map(xp.asarray, (w, h)) # XXX convert freqz
mask = xp.asarray(w < 0.01)
h = xp.asarray(h)
assert xp.sum(xp.astype(mask, xp.int64)) > 3
habs = xp.abs(h[mask])
xp_assert_close(habs, xp.ones_like(habs), atol=1e-4)
mask = xp.asarray(w > 0.99)
assert xp.sum(xp.astype(mask, xp.int64)) > 3
habs = xp.abs(h[mask])
xp_assert_close(habs, xp.zeros_like(habs), atol=1e-4)
def test_fs_validation(self):
with pytest.raises(ValueError, match="Sampling.*single scalar"):
firls(11, .1, 1, fs=np.array([10, 20]))
class TestMinimumPhase:
@pytest.mark.thread_unsafe
def test_bad_args(self):
# not enough taps
assert_raises(ValueError, minimum_phase, [1.])
assert_raises(ValueError, minimum_phase, [1., 1.])
assert_raises(ValueError, minimum_phase, np.full(10, 1j))
assert_raises((ValueError, TypeError), minimum_phase, 'foo')
assert_raises(ValueError, minimum_phase, np.ones(10), n_fft=8)
assert_raises(ValueError, minimum_phase, np.ones(10), method='foo')
assert_warns(RuntimeWarning, minimum_phase, np.arange(3))
with pytest.raises(ValueError, match="is only supported when"):
minimum_phase(np.ones(3), method='hilbert', half=False)
def test_homomorphic(self):
# check that it can recover frequency responses of arbitrary
# linear-phase filters
# for some cases we can get the actual filter back
h = [1, -1]
h_new = minimum_phase(np.convolve(h, h[::-1]))
xp_assert_close(h_new, np.asarray(h, dtype=np.float64), rtol=0.05)
# but in general we only guarantee we get the magnitude back
rng = np.random.RandomState(0)
for n in (2, 3, 10, 11, 15, 16, 17, 20, 21, 100, 101):
h = rng.randn(n)
h_linear = np.convolve(h, h[::-1])
h_new = minimum_phase(h_linear)
xp_assert_close(np.abs(fft(h_new)), np.abs(fft(h)), rtol=1e-4)
h_new = minimum_phase(h_linear, half=False)
assert len(h_linear) == len(h_new)
xp_assert_close(np.abs(fft(h_new)), np.abs(fft(h_linear)), rtol=1e-4)
@skip_xp_backends("dask.array", reason="too slow")
@skip_xp_backends("jax.numpy", reason="immutable arrays")
def test_hilbert(self, xp):
# compare to MATLAB output of reference implementation
# f=[0 0.3 0.5 1];
# a=[1 1 0 0];
# h=remez(11,f,a);
h = remez(12, [0, 0.3, 0.5, 1], [1, 0], fs=2.)
k = [0.349585548646686, 0.373552164395447, 0.326082685363438,
0.077152207480935, -0.129943946349364, -0.059355880509749]
h = xp.asarray(h)
k = xp.asarray(k, dtype=xp.float64)
m = minimum_phase(h, 'hilbert')
xp_assert_close(m, k, rtol=5e-3)
# f=[0 0.8 0.9 1];
# a=[0 0 1 1];
# h=remez(20,f,a);
h = remez(21, [0, 0.8, 0.9, 1], [0, 1], fs=2.)
k = [0.232486803906329, -0.133551833687071, 0.151871456867244,
-0.157957283165866, 0.151739294892963, -0.129293146705090,
0.100787844523204, -0.065832656741252, 0.035361328741024,
-0.014977068692269, -0.158416139047557]
h = xp.asarray(h)
k = xp.asarray(k, dtype=xp.float64)
m = minimum_phase(h, 'hilbert', n_fft=2**19)
xp_assert_close(m, k, rtol=2e-3)
class Testfirwin_2d:
def test_invalid_args(self):
with pytest.raises(ValueError,
match="hsize must be a 2-element tuple or list"):
firwin_2d((50,), window=(("kaiser", 5.0), "boxcar"), fc=0.4)
with pytest.raises(ValueError,
match="window must be a 2-element tuple or list"):
firwin_2d((51, 51), window=("hamming",), fc=0.5)
with pytest.raises(ValueError,
match="window must be a 2-element tuple or list"):
firwin_2d((51, 51), window="invalid_window", fc=0.5)
def test_filter_design(self):
hsize = (51, 51)
window = (("kaiser", 8.0), ("kaiser", 8.0))
fc = 0.4
taps_kaiser = firwin_2d(hsize, window, fc=fc)
assert taps_kaiser.shape == (51, 51)
window = ("hamming", "hamming")
taps_hamming = firwin_2d(hsize, window, fc=fc)
assert taps_hamming.shape == (51, 51)
def test_impulse_response(self):
hsize = (31, 31)
window = ("hamming", "hamming")
fc = 0.4
taps = firwin_2d(hsize, window, fc=fc)
impulse = np.zeros((63, 63))
impulse[31, 31] = 1
response = convolve2d(impulse, taps, mode='same')
expected_response = taps
xp_assert_close(response[16:47, 16:47], expected_response, rtol=1e-5)
def test_frequency_response(self):
"""Compare 1d and 2d frequency response. """
hsize = (31, 31)
windows = ("hamming", "hamming")
fc = 0.4
taps_1d = firwin(numtaps=hsize[0], cutoff=fc, window=windows[0])
taps_2d = firwin_2d(hsize, windows, fc=fc)
f_resp_1d = fft(taps_1d)
f_resp_2d = fft2(taps_2d)
xp_assert_close(f_resp_2d[0, :], f_resp_1d,
err_msg='DC Gain at (0, f1) is not unity!')
xp_assert_close(f_resp_2d[:, 0], f_resp_1d,
err_msg='DC Gain at (f0, 0) is not unity!')
xp_assert_close(f_resp_2d, np.outer(f_resp_1d, f_resp_1d),
atol=np.finfo(f_resp_2d.dtype).resolution,
err_msg='2d frequency response is not product of 1d responses')
def test_symmetry(self):
hsize = (51, 51)
window = ("hamming", "hamming")
fc = 0.4
taps = firwin_2d(hsize, window, fc=fc)
xp_assert_close(taps, np.flip(taps), rtol=1e-5)
def test_circular_symmetry(self):
hsize = (51, 51)
window = "hamming"
taps = firwin_2d(hsize, window, circular=True, fc=0.5)
center = hsize[0] // 2
for i in range(hsize[0]):
for j in range(hsize[1]):
xp_assert_close(taps[i, j],
taps[center - (i - center), center - (j - center)],
rtol=1e-5)
def test_edge_case_circular(self):
hsize = (3, 3)
window = "hamming"
taps_small = firwin_2d(hsize, window, circular=True, fc=0.5)
assert taps_small.shape == (3, 3)
hsize = (101, 101)
taps_large = firwin_2d(hsize, window, circular=True, fc=0.5)
assert taps_large.shape == (101, 101)
def test_known_result(self):
hsize = (5, 5)
window = ('kaiser', 8.0)
fc = 0.1
fs = 2
row_filter = firwin(hsize[0], cutoff=fc, window=window, fs=fs)
col_filter = firwin(hsize[1], cutoff=fc, window=window, fs=fs)
known_result = np.outer(row_filter, col_filter)
taps = firwin_2d(hsize, (window, window), fc=fc)
assert taps.shape == known_result.shape, (
f"Shape mismatch: {taps.shape} vs {known_result.shape}"
)
assert np.allclose(taps, known_result, rtol=1e-1), (
f"Filter shape mismatch: {taps} vs {known_result}"
)

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,71 @@
import numpy as np
from pytest import raises as assert_raises
from scipy._lib._array_api import xp_assert_close, xp_assert_equal
from numpy.fft import fft, ifft
from scipy.signal import max_len_seq
class TestMLS:
def test_mls_inputs(self):
# can't all be zero state
assert_raises(ValueError, max_len_seq,
10, state=np.zeros(10))
# wrong size state
assert_raises(ValueError, max_len_seq, 10,
state=np.ones(3))
# wrong length
assert_raises(ValueError, max_len_seq, 10, length=-1)
xp_assert_equal(max_len_seq(10, length=0)[0],
np.asarray([], dtype=np.int8)
)
# unknown taps
assert_raises(ValueError, max_len_seq, 64)
# bad taps
assert_raises(ValueError, max_len_seq, 10, taps=[-1, 1])
def test_mls_output(self):
# define some alternate working taps
alt_taps = {2: [1], 3: [2], 4: [3], 5: [4, 3, 2], 6: [5, 4, 1], 7: [4],
8: [7, 5, 3]}
# assume the other bit levels work, too slow to test higher orders...
for nbits in range(2, 8):
for state in [None, np.round(np.random.rand(nbits))]:
for taps in [None, alt_taps[nbits]]:
if state is not None and np.all(state == 0):
state[0] = 1 # they can't all be zero
orig_m = max_len_seq(nbits, state=state,
taps=taps)[0]
m = 2. * orig_m - 1. # convert to +/- 1 representation
# First, make sure we got all 1's or -1
err_msg = "mls had non binary terms"
xp_assert_equal(np.abs(m), np.ones_like(m),
err_msg=err_msg)
# Test via circular cross-correlation, which is just mult.
# in the frequency domain with one signal conjugated
tester = np.real(ifft(fft(m) * np.conj(fft(m))))
out_len = 2**nbits - 1
# impulse amplitude == test_len
err_msg = "mls impulse has incorrect value"
xp_assert_close(tester[0],
float(out_len),
err_msg=err_msg
)
# steady-state is -1
err_msg = "mls steady-state has incorrect value"
xp_assert_close(tester[1:],
np.full(out_len - 1, -1, dtype=tester.dtype),
err_msg=err_msg)
# let's do the split thing using a couple options
for n in (1, 2**(nbits - 1)):
m1, s1 = max_len_seq(nbits, state=state, taps=taps,
length=n)
m2, s2 = max_len_seq(nbits, state=s1, taps=taps,
length=1)
m3, s3 = max_len_seq(nbits, state=s2, taps=taps,
length=out_len - n - 1)
new_m = np.concatenate((m1, m2, m3))
xp_assert_equal(orig_m, new_m)

View file

@ -0,0 +1,915 @@
import copy
import numpy as np
import pytest
from pytest import raises, warns
from scipy._lib._array_api import xp_assert_close, xp_assert_equal
from scipy.signal._peak_finding import (
argrelmax,
argrelmin,
peak_prominences,
peak_widths,
_unpack_condition_args,
find_peaks,
find_peaks_cwt,
_identify_ridge_lines
)
from scipy.signal.windows import gaussian
from scipy.signal._peak_finding_utils import _local_maxima_1d, PeakPropertyWarning
def _gen_gaussians(center_locs, sigmas, total_length):
xdata = np.arange(0, total_length).astype(float)
out_data = np.zeros(total_length, dtype=float)
for ind, sigma in enumerate(sigmas):
tmp = (xdata - center_locs[ind]) / sigma
out_data += np.exp(-(tmp**2))
return out_data
def _gen_gaussians_even(sigmas, total_length):
num_peaks = len(sigmas)
delta = total_length / (num_peaks + 1)
center_locs = np.linspace(delta, total_length - delta, num=num_peaks).astype(int)
out_data = _gen_gaussians(center_locs, sigmas, total_length)
return out_data, center_locs
def _gen_ridge_line(start_locs, max_locs, length, distances, gaps):
"""
Generate coordinates for a ridge line.
Will be a series of coordinates, starting a start_loc (length 2).
The maximum distance between any adjacent columns will be
`max_distance`, the max distance between adjacent rows
will be `map_gap'.
`max_locs` should be the size of the intended matrix. The
ending coordinates are guaranteed to be less than `max_locs`,
although they may not approach `max_locs` at all.
"""
def keep_bounds(num, max_val):
out = max(num, 0)
out = min(out, max_val)
return out
gaps = copy.deepcopy(gaps)
distances = copy.deepcopy(distances)
locs = np.zeros([length, 2], dtype=int)
locs[0, :] = start_locs
total_length = max_locs[0] - start_locs[0] - sum(gaps)
if total_length < length:
raise ValueError('Cannot generate ridge line according to constraints')
dist_int = length / len(distances) - 1
gap_int = length / len(gaps) - 1
for ind in range(1, length):
nextcol = locs[ind - 1, 1]
nextrow = locs[ind - 1, 0] + 1
if (ind % dist_int == 0) and (len(distances) > 0):
nextcol += ((-1)**ind)*distances.pop()
if (ind % gap_int == 0) and (len(gaps) > 0):
nextrow += gaps.pop()
nextrow = keep_bounds(nextrow, max_locs[0])
nextcol = keep_bounds(nextcol, max_locs[1])
locs[ind, :] = [nextrow, nextcol]
return [locs[:, 0], locs[:, 1]]
class TestLocalMaxima1d:
def test_empty(self):
"""Test with empty signal."""
x = np.array([], dtype=np.float64)
for array in _local_maxima_1d(x):
xp_assert_equal(array, np.array([]), check_dtype=False)
assert array.base is None
def test_linear(self):
"""Test with linear signal."""
x = np.linspace(0, 100)
for array in _local_maxima_1d(x):
xp_assert_equal(array, np.array([], dtype=np.intp))
assert array.base is None
def test_simple(self):
"""Test with simple signal."""
x = np.linspace(-10, 10, 50)
x[2::3] += 1
expected = np.arange(2, 50, 3, dtype=np.intp)
for array in _local_maxima_1d(x):
# For plateaus of size 1, the edges are identical with the
# midpoints
xp_assert_equal(array, expected, check_dtype=False)
assert array.base is None
def test_flat_maxima(self):
"""Test if flat maxima are detected correctly."""
x = np.array([-1.3, 0, 1, 0, 2, 2, 0, 3, 3, 3, 2.99, 4, 4, 4, 4, -10,
-5, -5, -5, -5, -5, -10])
midpoints, left_edges, right_edges = _local_maxima_1d(x)
xp_assert_equal(midpoints, np.array([2, 4, 8, 12, 18]), check_dtype=False)
xp_assert_equal(left_edges, np.array([2, 4, 7, 11, 16]), check_dtype=False)
xp_assert_equal(right_edges, np.array([2, 5, 9, 14, 20]), check_dtype=False)
@pytest.mark.parametrize('x', [
np.array([1., 0, 2]),
np.array([3., 3, 0, 4, 4]),
np.array([5., 5, 5, 0, 6, 6, 6]),
])
def test_signal_edges(self, x):
"""Test if behavior on signal edges is correct."""
for array in _local_maxima_1d(x):
xp_assert_equal(array, np.array([], dtype=np.intp))
assert array.base is None
def test_exceptions(self):
"""Test input validation and raised exceptions."""
with raises(ValueError, match="wrong number of dimensions"):
_local_maxima_1d(np.ones((1, 1)))
with raises(ValueError, match="expected 'const float64_t'"):
_local_maxima_1d(np.ones(1, dtype=int))
with raises(TypeError, match="list"):
_local_maxima_1d([1., 2.])
with raises(TypeError, match="'x' must not be None"):
_local_maxima_1d(None)
class TestRidgeLines:
def test_empty(self):
test_matr = np.zeros([20, 100])
lines = _identify_ridge_lines(test_matr, np.full(20, 2), 1)
assert len(lines) == 0
def test_minimal(self):
test_matr = np.zeros([20, 100])
test_matr[0, 10] = 1
lines = _identify_ridge_lines(test_matr, np.full(20, 2), 1)
assert len(lines) == 1
test_matr = np.zeros([20, 100])
test_matr[0:2, 10] = 1
lines = _identify_ridge_lines(test_matr, np.full(20, 2), 1)
assert len(lines) == 1
def test_single_pass(self):
distances = [0, 1, 2, 5]
gaps = [0, 1, 2, 0, 1]
test_matr = np.zeros([20, 50]) + 1e-12
length = 12
line = _gen_ridge_line([0, 25], test_matr.shape, length, distances, gaps)
test_matr[line[0], line[1]] = 1
max_distances = np.full(20, max(distances))
identified_lines = _identify_ridge_lines(test_matr,
max_distances,
max(gaps) + 1)
assert len(identified_lines) == 1
for iline_, line_ in zip(identified_lines[0], line):
xp_assert_equal(iline_, line_, check_dtype=False)
def test_single_bigdist(self):
distances = [0, 1, 2, 5]
gaps = [0, 1, 2, 4]
test_matr = np.zeros([20, 50])
length = 12
line = _gen_ridge_line([0, 25], test_matr.shape, length, distances, gaps)
test_matr[line[0], line[1]] = 1
max_dist = 3
max_distances = np.full(20, max_dist)
#This should get 2 lines, since the distance is too large
identified_lines = _identify_ridge_lines(test_matr,
max_distances,
max(gaps) + 1)
assert len(identified_lines) == 2
for iline in identified_lines:
adists = np.diff(iline[1])
np.testing.assert_array_less(np.abs(adists), max_dist)
agaps = np.diff(iline[0])
np.testing.assert_array_less(np.abs(agaps), max(gaps) + 0.1)
def test_single_biggap(self):
distances = [0, 1, 2, 5]
max_gap = 3
gaps = [0, 4, 2, 1]
test_matr = np.zeros([20, 50])
length = 12
line = _gen_ridge_line([0, 25], test_matr.shape, length, distances, gaps)
test_matr[line[0], line[1]] = 1
max_dist = 6
max_distances = np.full(20, max_dist)
#This should get 2 lines, since the gap is too large
identified_lines = _identify_ridge_lines(test_matr, max_distances, max_gap)
assert len(identified_lines) == 2
for iline in identified_lines:
adists = np.diff(iline[1])
np.testing.assert_array_less(np.abs(adists), max_dist)
agaps = np.diff(iline[0])
np.testing.assert_array_less(np.abs(agaps), max(gaps) + 0.1)
def test_single_biggaps(self):
distances = [0]
max_gap = 1
gaps = [3, 6]
test_matr = np.zeros([50, 50])
length = 30
line = _gen_ridge_line([0, 25], test_matr.shape, length, distances, gaps)
test_matr[line[0], line[1]] = 1
max_dist = 1
max_distances = np.full(50, max_dist)
#This should get 3 lines, since the gaps are too large
identified_lines = _identify_ridge_lines(test_matr, max_distances, max_gap)
assert len(identified_lines) == 3
for iline in identified_lines:
adists = np.diff(iline[1])
np.testing.assert_array_less(np.abs(adists), max_dist)
agaps = np.diff(iline[0])
np.testing.assert_array_less(np.abs(agaps), max(gaps) + 0.1)
class TestArgrel:
def test_empty(self):
# Regression test for gh-2832.
# When there are no relative extrema, make sure that
# the number of empty arrays returned matches the
# dimension of the input.
empty_array = np.array([], dtype=int)
z1 = np.zeros(5)
i = argrelmin(z1)
xp_assert_equal(len(i), 1)
xp_assert_equal(i[0], empty_array, check_dtype=False)
z2 = np.zeros((3, 5))
row, col = argrelmin(z2, axis=0)
xp_assert_equal(row, empty_array, check_dtype=False)
xp_assert_equal(col, empty_array, check_dtype=False)
row, col = argrelmin(z2, axis=1)
xp_assert_equal(row, empty_array, check_dtype=False)
xp_assert_equal(col, empty_array, check_dtype=False)
def test_basic(self):
# Note: the docstrings for the argrel{min,max,extrema} functions
# do not give a guarantee of the order of the indices, so we'll
# sort them before testing.
x = np.array([[1, 2, 2, 3, 2],
[2, 1, 2, 2, 3],
[3, 2, 1, 2, 2],
[2, 3, 2, 1, 2],
[1, 2, 3, 2, 1]])
row, col = argrelmax(x, axis=0)
order = np.argsort(row)
xp_assert_equal(row[order], [1, 2, 3], check_dtype=False)
xp_assert_equal(col[order], [4, 0, 1], check_dtype=False)
row, col = argrelmax(x, axis=1)
order = np.argsort(row)
xp_assert_equal(row[order], [0, 3, 4], check_dtype=False)
xp_assert_equal(col[order], [3, 1, 2], check_dtype=False)
row, col = argrelmin(x, axis=0)
order = np.argsort(row)
xp_assert_equal(row[order], [1, 2, 3], check_dtype=False)
xp_assert_equal(col[order], [1, 2, 3], check_dtype=False)
row, col = argrelmin(x, axis=1)
order = np.argsort(row)
xp_assert_equal(row[order], [1, 2, 3], check_dtype=False)
xp_assert_equal(col[order], [1, 2, 3], check_dtype=False)
def test_highorder(self):
order = 2
sigmas = [1.0, 2.0, 10.0, 5.0, 15.0]
test_data, act_locs = _gen_gaussians_even(sigmas, 500)
test_data[act_locs + order] = test_data[act_locs]*0.99999
test_data[act_locs - order] = test_data[act_locs]*0.99999
rel_max_locs = argrelmax(test_data, order=order, mode='clip')[0]
assert len(rel_max_locs) == len(act_locs)
assert (rel_max_locs == act_locs).all()
def test_2d_gaussians(self):
sigmas = [1.0, 2.0, 10.0]
test_data, act_locs = _gen_gaussians_even(sigmas, 100)
rot_factor = 20
rot_range = np.arange(0, len(test_data)) - rot_factor
test_data_2 = np.vstack([test_data, test_data[rot_range]])
rel_max_rows, rel_max_cols = argrelmax(test_data_2, axis=1, order=1)
for rw in range(0, test_data_2.shape[0]):
inds = (rel_max_rows == rw)
assert len(rel_max_cols[inds]) == len(act_locs)
assert (act_locs == (rel_max_cols[inds] - rot_factor*rw)).all()
class TestPeakProminences:
def test_empty(self):
"""
Test if an empty array is returned if no peaks are provided.
"""
out = peak_prominences([1, 2, 3], [])
for arr, dtype in zip(out, [np.float64, np.intp, np.intp]):
assert arr.size == 0
assert arr.dtype == dtype
out = peak_prominences([], [])
for arr, dtype in zip(out, [np.float64, np.intp, np.intp]):
assert arr.size == 0
assert arr.dtype == dtype
def test_basic(self):
"""
Test if height of prominences is correctly calculated in signal with
rising baseline (peak widths are 1 sample).
"""
# Prepare basic signal
x = np.array([-1, 1.2, 1.2, 1, 3.2, 1.3, 2.88, 2.1])
peaks = np.array([1, 2, 4, 6])
lbases = np.array([0, 0, 0, 5])
rbases = np.array([3, 3, 5, 7])
proms = x[peaks] - np.max([x[lbases], x[rbases]], axis=0)
# Test if calculation matches handcrafted result
out = peak_prominences(x, peaks)
xp_assert_equal(out[0], proms, check_dtype=False)
xp_assert_equal(out[1], lbases, check_dtype=False)
xp_assert_equal(out[2], rbases, check_dtype=False)
def test_edge_cases(self):
"""
Test edge cases.
"""
# Peaks have same height, prominence and bases
x = [0, 2, 1, 2, 1, 2, 0]
peaks = [1, 3, 5]
proms, lbases, rbases = peak_prominences(x, peaks)
xp_assert_equal(proms, np.asarray([2.0, 2, 2]), check_dtype=False)
xp_assert_equal(lbases, [0, 0, 0], check_dtype=False)
xp_assert_equal(rbases, [6, 6, 6], check_dtype=False)
# Peaks have same height & prominence but different bases
x = [0, 1, 0, 1, 0, 1, 0]
peaks = np.array([1, 3, 5])
proms, lbases, rbases = peak_prominences(x, peaks)
xp_assert_equal(proms, np.asarray([1.0, 1, 1]))
xp_assert_equal(lbases, peaks - 1, check_dtype=False)
xp_assert_equal(rbases, peaks + 1, check_dtype=False)
def test_non_contiguous(self):
"""
Test with non-C-contiguous input arrays.
"""
x = np.repeat([-9, 9, 9, 0, 3, 1], 2)
peaks = np.repeat([1, 2, 4], 2)
proms, lbases, rbases = peak_prominences(x[::2], peaks[::2])
xp_assert_equal(proms, np.asarray([9.0, 9, 2]))
xp_assert_equal(lbases, [0, 0, 3], check_dtype=False)
xp_assert_equal(rbases, [3, 3, 5], check_dtype=False)
def test_wlen(self):
"""
Test if wlen actually shrinks the evaluation range correctly.
"""
x = [0, 1, 2, 3, 1, 0, -1]
peak = [3]
# Test rounding behavior of wlen
proms = peak_prominences(x, peak)
for prom, val in zip(proms, [3.0, 0, 6]):
assert prom == val
for wlen, i in [(8, 0), (7, 0), (6, 0), (5, 1), (3.2, 1), (3, 2), (1.1, 2)]:
proms = peak_prominences(x, peak, wlen)
for prom, val in zip(proms, [3. - i, 0 + i, 6 - i]):
assert prom == val
def test_exceptions(self):
"""
Verify that exceptions and warnings are raised.
"""
# x with dimension > 1
with raises(ValueError, match='1-D array'):
peak_prominences([[0, 1, 1, 0]], [1, 2])
# peaks with dimension > 1
with raises(ValueError, match='1-D array'):
peak_prominences([0, 1, 1, 0], [[1, 2]])
# x with dimension < 1
with raises(ValueError, match='1-D array'):
peak_prominences(3, [0,])
# empty x with supplied
with raises(ValueError, match='not a valid index'):
peak_prominences([], [0])
# invalid indices with non-empty x
for p in [-100, -1, 3, 1000]:
with raises(ValueError, match='not a valid index'):
peak_prominences([1, 0, 2], [p])
# peaks is not cast-able to np.intp
with raises(TypeError, match='cannot safely cast'):
peak_prominences([0, 1, 1, 0], [1.1, 2.3])
# wlen < 3
with raises(ValueError, match='wlen'):
peak_prominences(np.arange(10), [3, 5], wlen=1)
@pytest.mark.thread_unsafe
def test_warnings(self):
"""
Verify that appropriate warnings are raised.
"""
msg = "some peaks have a prominence of 0"
for p in [0, 1, 2]:
with warns(PeakPropertyWarning, match=msg):
peak_prominences([1, 0, 2], [p,])
with warns(PeakPropertyWarning, match=msg):
peak_prominences([0, 1, 1, 1, 0], [2], wlen=2)
class TestPeakWidths:
def test_empty(self):
"""
Test if an empty array is returned if no peaks are provided.
"""
widths = peak_widths([], [])[0]
assert isinstance(widths, np.ndarray)
assert widths.size == 0
widths = peak_widths([1, 2, 3], [])[0]
assert isinstance(widths, np.ndarray)
assert widths.size == 0
out = peak_widths([], [])
for arr in out:
assert isinstance(arr, np.ndarray)
assert arr.size == 0
@pytest.mark.filterwarnings("ignore:some peaks have a width of 0")
def test_basic(self):
"""
Test a simple use case with easy to verify results at different relative
heights.
"""
x = np.array([1, 0, 1, 2, 1, 0, -1])
prominence = 2
for rel_height, width_true, lip_true, rip_true in [
(0., 0., 3., 3.), # raises warning
(0.25, 1., 2.5, 3.5),
(0.5, 2., 2., 4.),
(0.75, 3., 1.5, 4.5),
(1., 4., 1., 5.),
(2., 5., 1., 6.),
(3., 5., 1., 6.)
]:
width_calc, height, lip_calc, rip_calc = peak_widths(
x, [3], rel_height)
xp_assert_close(width_calc, np.asarray([width_true]))
xp_assert_close(height, np.asarray([2 - rel_height * prominence]))
xp_assert_close(lip_calc, np.asarray([lip_true]))
xp_assert_close(rip_calc, np.asarray([rip_true]))
def test_non_contiguous(self):
"""
Test with non-C-contiguous input arrays.
"""
x = np.repeat([0, 100, 50], 4)
peaks = np.repeat([1], 3)
result = peak_widths(x[::4], peaks[::3])
xp_assert_equal(result,
np.asarray([[0.75], [75], [0.75], [1.5]])
)
def test_exceptions(self):
"""
Verify that argument validation works as intended.
"""
with raises(ValueError, match='1-D array'):
# x with dimension > 1
peak_widths(np.zeros((3, 4)), np.ones(3))
with raises(ValueError, match='1-D array'):
# x with dimension < 1
peak_widths(3, [0])
with raises(ValueError, match='1-D array'):
# peaks with dimension > 1
peak_widths(np.arange(10), np.ones((3, 2), dtype=np.intp))
with raises(ValueError, match='1-D array'):
# peaks with dimension < 1
peak_widths(np.arange(10), 3)
with raises(ValueError, match='not a valid index'):
# peak pos exceeds x.size
peak_widths(np.arange(10), [8, 11])
with raises(ValueError, match='not a valid index'):
# empty x with peaks supplied
peak_widths([], [1, 2])
with raises(TypeError, match='cannot safely cast'):
# peak cannot be safely cast to intp
peak_widths(np.arange(10), [1.1, 2.3])
with raises(ValueError, match='rel_height'):
# rel_height is < 0
peak_widths([0, 1, 0, 1, 0], [1, 3], rel_height=-1)
with raises(TypeError, match='None'):
# prominence data contains None
peak_widths([1, 2, 1], [1], prominence_data=(None, None, None))
@pytest.mark.thread_unsafe
def test_warnings(self):
"""
Verify that appropriate warnings are raised.
"""
msg = "some peaks have a width of 0"
with warns(PeakPropertyWarning, match=msg):
# Case: rel_height is 0
peak_widths([0, 1, 0], [1], rel_height=0)
with warns(PeakPropertyWarning, match=msg):
# Case: prominence is 0 and bases are identical
peak_widths(
[0, 1, 1, 1, 0], [2],
prominence_data=(np.array([0.], np.float64),
np.array([2], np.intp),
np.array([2], np.intp))
)
def test_mismatching_prominence_data(self):
"""Test with mismatching peak and / or prominence data."""
x = [0, 1, 0]
peak = [1]
for i, (prominences, left_bases, right_bases) in enumerate([
((1.,), (-1,), (2,)), # left base not in x
((1.,), (0,), (3,)), # right base not in x
((1.,), (2,), (0,)), # swapped bases same as peak
((1., 1.), (0, 0), (2, 2)), # array shapes don't match peaks
((1., 1.), (0,), (2,)), # arrays with different shapes
((1.,), (0, 0), (2,)), # arrays with different shapes
((1.,), (0,), (2, 2)) # arrays with different shapes
]):
# Make sure input is matches output of signal.peak_prominences
prominence_data = (np.array(prominences, dtype=np.float64),
np.array(left_bases, dtype=np.intp),
np.array(right_bases, dtype=np.intp))
# Test for correct exception
if i < 3:
match = "prominence data is invalid for peak"
else:
match = "arrays in `prominence_data` must have the same shape"
with raises(ValueError, match=match):
peak_widths(x, peak, prominence_data=prominence_data)
@pytest.mark.filterwarnings("ignore:some peaks have a width of 0")
def test_intersection_rules(self):
"""Test if x == eval_height counts as an intersection."""
# Flatt peak with two possible intersection points if evaluated at 1
x = [0, 1, 2, 1, 3, 3, 3, 1, 2, 1, 0]
# relative height is 0 -> width is 0 as well, raises warning
xp_assert_close(peak_widths(x, peaks=[5], rel_height=0),
[(0.,), (3.,), (5.,), (5.,)])
# width_height == x counts as intersection -> nearest 1 is chosen
xp_assert_close(peak_widths(x, peaks=[5], rel_height=2/3),
[(4.,), (1.,), (3.,), (7.,)])
def test_unpack_condition_args():
"""
Verify parsing of condition arguments for `scipy.signal.find_peaks` function.
"""
x = np.arange(10)
amin_true = x
amax_true = amin_true + 10
peaks = amin_true[1::2]
# Test unpacking with None or interval
assert (None, None) == _unpack_condition_args((None, None), x, peaks)
assert (1, None) == _unpack_condition_args(1, x, peaks)
assert (1, None) == _unpack_condition_args((1, None), x, peaks)
assert (None, 2) == _unpack_condition_args((None, 2), x, peaks)
assert (3., 4.5) == _unpack_condition_args((3., 4.5), x, peaks)
# Test if borders are correctly reduced with `peaks`
amin_calc, amax_calc = _unpack_condition_args((amin_true, amax_true), x, peaks)
xp_assert_equal(amin_calc, amin_true[peaks])
xp_assert_equal(amax_calc, amax_true[peaks])
# Test raises if array borders don't match x
with raises(ValueError, match="array size of lower"):
_unpack_condition_args(amin_true, np.arange(11), peaks)
with raises(ValueError, match="array size of upper"):
_unpack_condition_args((None, amin_true), np.arange(11), peaks)
class TestFindPeaks:
# Keys of optionally returned properties
property_keys = {'peak_heights', 'left_thresholds', 'right_thresholds',
'prominences', 'left_bases', 'right_bases', 'widths',
'width_heights', 'left_ips', 'right_ips'}
def test_constant(self):
"""
Test behavior for signal without local maxima.
"""
open_interval = (None, None)
peaks, props = find_peaks(np.ones(10),
height=open_interval, threshold=open_interval,
prominence=open_interval, width=open_interval)
assert peaks.size == 0
for key in self.property_keys:
assert props[key].size == 0
def test_plateau_size(self):
"""
Test plateau size condition for peaks.
"""
# Prepare signal with peaks with peak_height == plateau_size
plateau_sizes = np.array([1, 2, 3, 4, 8, 20, 111])
x = np.zeros(plateau_sizes.size * 2 + 1)
x[1::2] = plateau_sizes
repeats = np.ones(x.size, dtype=int)
repeats[1::2] = x[1::2]
x = np.repeat(x, repeats)
# Test full output
peaks, props = find_peaks(x, plateau_size=(None, None))
xp_assert_equal(peaks, [1, 3, 7, 11, 18, 33, 100], check_dtype=False)
xp_assert_equal(props["plateau_sizes"], plateau_sizes, check_dtype=False)
xp_assert_equal(props["left_edges"], peaks - (plateau_sizes - 1) // 2,
check_dtype=False)
xp_assert_equal(props["right_edges"], peaks + plateau_sizes // 2,
check_dtype=False)
# Test conditions
xp_assert_equal(find_peaks(x, plateau_size=4)[0], [11, 18, 33, 100],
check_dtype=False)
xp_assert_equal(find_peaks(x, plateau_size=(None, 3.5))[0], [1, 3, 7],
check_dtype=False)
xp_assert_equal(find_peaks(x, plateau_size=(5, 50))[0], [18, 33],
check_dtype=False)
def test_height_condition(self):
"""
Test height condition for peaks.
"""
x = (0., 1/3, 0., 2.5, 0, 4., 0)
peaks, props = find_peaks(x, height=(None, None))
xp_assert_equal(peaks, np.array([1, 3, 5]), check_dtype=False)
xp_assert_equal(props['peak_heights'], np.array([1/3, 2.5, 4.]),
check_dtype=False)
xp_assert_equal(find_peaks(x, height=0.5)[0], np.array([3, 5]),
check_dtype=False)
xp_assert_equal(find_peaks(x, height=(None, 3))[0], np.array([1, 3]),
check_dtype=False)
xp_assert_equal(find_peaks(x, height=(2, 3))[0], np.array([3]),
check_dtype=False)
def test_threshold_condition(self):
"""
Test threshold condition for peaks.
"""
x = (0, 2, 1, 4, -1)
peaks, props = find_peaks(x, threshold=(None, None))
xp_assert_equal(peaks, np.array([1, 3]), check_dtype=False)
xp_assert_equal(props['left_thresholds'], np.array([2.0, 3.0]))
xp_assert_equal(props['right_thresholds'], np.array([1.0, 5.0]))
xp_assert_equal(find_peaks(x, threshold=2)[0], np.array([3]),
check_dtype=False)
xp_assert_equal(find_peaks(x, threshold=3.5)[0], np.array([], dtype=int),
check_dtype=False)
xp_assert_equal(find_peaks(x, threshold=(None, 5))[0], np.array([1, 3]),
check_dtype=False)
xp_assert_equal(find_peaks(x, threshold=(None, 4))[0], np.array([1]),
check_dtype=False)
xp_assert_equal(find_peaks(x, threshold=(2, 4))[0], np.array([], dtype=int),
check_dtype=False)
def test_distance_condition(self):
"""
Test distance condition for peaks.
"""
# Peaks of different height with constant distance 3
peaks_all = np.arange(1, 21, 3)
x = np.zeros(21)
x[peaks_all] += np.linspace(1, 2, peaks_all.size)
# Test if peaks with "minimal" distance are still selected (distance = 3)
xp_assert_equal(find_peaks(x, distance=3)[0], peaks_all, check_dtype=False)
# Select every second peak (distance > 3)
peaks_subset = find_peaks(x, distance=3.0001)[0]
# Test if peaks_subset is subset of peaks_all
assert np.setdiff1d(peaks_subset, peaks_all, assume_unique=True).size == 0
# Test if every second peak was removed
dfs = np.diff(peaks_subset)
xp_assert_equal(dfs, 6*np.ones_like(dfs))
# Test priority of peak removal
x = [-2, 1, -1, 0, -3]
peaks_subset = find_peaks(x, distance=10)[0] # use distance > x size
assert peaks_subset.size == 1 and peaks_subset[0] == 1
def test_prominence_condition(self):
"""
Test prominence condition for peaks.
"""
x = np.linspace(0, 10, 100)
peaks_true = np.arange(1, 99, 2)
offset = np.linspace(1, 10, peaks_true.size)
x[peaks_true] += offset
prominences = x[peaks_true] - x[peaks_true + 1]
interval = (3, 9)
keep = np.nonzero(
(interval[0] <= prominences) & (prominences <= interval[1]))
peaks_calc, properties = find_peaks(x, prominence=interval)
xp_assert_equal(peaks_calc, peaks_true[keep], check_dtype=False)
xp_assert_equal(properties['prominences'], prominences[keep], check_dtype=False)
xp_assert_equal(properties['left_bases'],
np.zeros_like(properties['left_bases']))
xp_assert_equal(properties['right_bases'], peaks_true[keep] + 1,
check_dtype=False)
def test_width_condition(self):
"""
Test width condition for peaks.
"""
x = np.array([1, 0, 1, 2, 1, 0, -1, 4, 0])
peaks, props = find_peaks(x, width=(None, 2), rel_height=0.75)
assert peaks.size == 1
xp_assert_equal(peaks, 7*np.ones_like(peaks))
xp_assert_close(props['widths'], np.asarray([1.35]))
xp_assert_close(props['width_heights'], np.asarray([1.]))
xp_assert_close(props['left_ips'], np.asarray([6.4]))
xp_assert_close(props['right_ips'], np.asarray([7.75]))
def test_properties(self):
"""
Test returned properties.
"""
open_interval = (None, None)
x = [0, 1, 0, 2, 1.5, 0, 3, 0, 5, 9]
peaks, props = find_peaks(x,
height=open_interval, threshold=open_interval,
prominence=open_interval, width=open_interval)
assert len(props) == len(self.property_keys)
for key in self.property_keys:
assert peaks.size == props[key].size
def test_raises(self):
"""
Test exceptions raised by function.
"""
with raises(ValueError, match="1-D array"):
find_peaks(np.array(1))
with raises(ValueError, match="1-D array"):
find_peaks(np.ones((2, 2)))
with raises(ValueError, match="distance"):
find_peaks(np.arange(10), distance=-1)
@pytest.mark.filterwarnings("ignore:some peaks have a prominence of 0",
"ignore:some peaks have a width of 0")
def test_wlen_smaller_plateau(self):
"""
Test behavior of prominence and width calculation if the given window
length is smaller than a peak's plateau size.
Regression test for gh-9110.
"""
peaks, props = find_peaks([0, 1, 1, 1, 0], prominence=(None, None),
width=(None, None), wlen=2)
xp_assert_equal(peaks, 2 * np.ones_like(peaks))
xp_assert_equal(props["prominences"], np.zeros_like(props["prominences"]))
xp_assert_equal(props["widths"], np.zeros_like(props["widths"]))
xp_assert_equal(props["width_heights"], np.ones_like(props["width_heights"]))
for key in ("left_bases", "right_bases", "left_ips", "right_ips"):
xp_assert_equal(props[key], peaks, check_dtype=False)
@pytest.mark.parametrize("kwargs", [
{},
{"distance": 3.0},
{"prominence": (None, None)},
{"width": (None, 2)},
])
def test_readonly_array(self, kwargs):
"""
Test readonly arrays are accepted.
"""
x = np.linspace(0, 10, 15)
x_readonly = x.copy()
x_readonly.flags.writeable = False
peaks, _ = find_peaks(x)
peaks_readonly, _ = find_peaks(x_readonly, **kwargs)
xp_assert_close(peaks, peaks_readonly)
class TestFindPeaksCwt:
def test_find_peaks_exact(self):
"""
Generate a series of gaussians and attempt to find the peak locations.
"""
sigmas = [5.0, 3.0, 10.0, 20.0, 10.0, 50.0]
num_points = 500
test_data, act_locs = _gen_gaussians_even(sigmas, num_points)
widths = np.arange(0.1, max(sigmas))
found_locs = find_peaks_cwt(test_data, widths, gap_thresh=2, min_snr=0,
min_length=None)
xp_assert_equal(found_locs, act_locs,
check_dtype=False,
err_msg="Found maximum locations did not equal those expected"
)
def test_find_peaks_withnoise(self):
"""
Verify that peak locations are (approximately) found
for a series of gaussians with added noise.
"""
sigmas = [5.0, 3.0, 10.0, 20.0, 10.0, 50.0]
num_points = 500
test_data, act_locs = _gen_gaussians_even(sigmas, num_points)
widths = np.arange(0.1, max(sigmas))
noise_amp = 0.07
np.random.seed(18181911)
test_data += (np.random.rand(num_points) - 0.5)*(2*noise_amp)
found_locs = find_peaks_cwt(test_data, widths, min_length=15,
gap_thresh=1, min_snr=noise_amp / 5)
err_msg ='Different number of peaks found than expected'
assert len(found_locs) == len(act_locs), err_msg
diffs = np.abs(found_locs - act_locs)
max_diffs = np.array(sigmas) / 5
np.testing.assert_array_less(diffs, max_diffs, 'Maximum location differed' +
f'by more than {max_diffs}')
def test_find_peaks_nopeak(self):
"""
Verify that no peak is found in
data that's just noise.
"""
noise_amp = 1.0
num_points = 100
rng = np.random.RandomState(181819141)
test_data = (rng.rand(num_points) - 0.5)*(2*noise_amp)
widths = np.arange(10, 50)
found_locs = find_peaks_cwt(test_data, widths, min_snr=5, noise_perc=30)
assert len(found_locs) == 0
def test_find_peaks_with_non_default_wavelets(self):
x = gaussian(200, 2)
widths = np.array([1, 2, 3, 4])
a = find_peaks_cwt(x, widths, wavelet=gaussian)
xp_assert_equal(a, np.asarray([100]), check_dtype=False)
def test_find_peaks_window_size(self):
"""
Verify that window_size is passed correctly to private function and
affects the result.
"""
sigmas = [2.0, 2.0]
num_points = 1000
test_data, act_locs = _gen_gaussians_even(sigmas, num_points)
widths = np.arange(0.1, max(sigmas), 0.2)
noise_amp = 0.05
rng = np.random.RandomState(18181911)
test_data += (rng.rand(num_points) - 0.5)*(2*noise_amp)
# Possibly contrived negative region to throw off peak finding
# when window_size is too large
test_data[250:320] -= 1
found_locs = find_peaks_cwt(test_data, widths, gap_thresh=2, min_snr=3,
min_length=None, window_size=None)
with pytest.raises(AssertionError):
assert found_locs.size == act_locs.size
found_locs = find_peaks_cwt(test_data, widths, gap_thresh=2, min_snr=3,
min_length=None, window_size=20)
assert found_locs.size == act_locs.size
def test_find_peaks_with_one_width(self):
"""
Verify that the `width` argument
in `find_peaks_cwt` can be a float
"""
xs = np.arange(0, np.pi, 0.05)
test_data = np.sin(xs)
widths = 1
found_locs = find_peaks_cwt(test_data, widths)
np.testing.assert_equal(found_locs, 32)

View file

@ -0,0 +1,51 @@
# Regressions tests on result types of some signal functions
import numpy as np
from scipy.signal import (decimate,
lfilter_zi,
lfiltic,
sos2tf,
sosfilt_zi)
def test_decimate():
ones_f32 = np.ones(32, dtype=np.float32)
assert decimate(ones_f32, 2).dtype == np.float32
ones_i64 = np.ones(32, dtype=np.int64)
assert decimate(ones_i64, 2).dtype == np.float64
def test_lfilter_zi():
b_f32 = np.array([1, 2, 3], dtype=np.float32)
a_f32 = np.array([4, 5, 6], dtype=np.float32)
assert lfilter_zi(b_f32, a_f32).dtype == np.float32
def test_lfiltic():
# this would return f32 when given a mix of f32 / f64 args
b_f32 = np.array([1, 2, 3], dtype=np.float32)
a_f32 = np.array([4, 5, 6], dtype=np.float32)
x_f32 = np.ones(32, dtype=np.float32)
b_f64 = b_f32.astype(np.float64)
a_f64 = a_f32.astype(np.float64)
x_f64 = x_f32.astype(np.float64)
assert lfiltic(b_f64, a_f32, x_f32).dtype == np.float64
assert lfiltic(b_f32, a_f64, x_f32).dtype == np.float64
assert lfiltic(b_f32, a_f32, x_f64).dtype == np.float64
assert lfiltic(b_f32, a_f32, x_f32, x_f64).dtype == np.float64
def test_sos2tf():
sos_f32 = np.array([[4, 5, 6, 1, 2, 3]], dtype=np.float32)
b, a = sos2tf(sos_f32)
assert b.dtype == np.float32
assert a.dtype == np.float32
def test_sosfilt_zi():
sos_f32 = np.array([[4, 5, 6, 1, 2, 3]], dtype=np.float32)
assert sosfilt_zi(sos_f32).dtype == np.float32

View file

@ -0,0 +1,363 @@
import pytest
import numpy as np
from numpy.testing import (assert_equal,
assert_array_equal,
)
from scipy._lib._array_api import (
assert_almost_equal, assert_array_almost_equal, xp_assert_close
)
from scipy.ndimage import convolve1d # type: ignore[attr-defined]
from scipy.signal import savgol_coeffs, savgol_filter
from scipy.signal._savitzky_golay import _polyder
def check_polyder(p, m, expected):
dp = _polyder(p, m)
assert_array_equal(dp, expected)
def test_polyder():
cases = [
([5], 0, [5]),
([5], 1, [0]),
([3, 2, 1], 0, [3, 2, 1]),
([3, 2, 1], 1, [6, 2]),
([3, 2, 1], 2, [6]),
([3, 2, 1], 3, [0]),
([[3, 2, 1], [5, 6, 7]], 0, [[3, 2, 1], [5, 6, 7]]),
([[3, 2, 1], [5, 6, 7]], 1, [[6, 2], [10, 6]]),
([[3, 2, 1], [5, 6, 7]], 2, [[6], [10]]),
([[3, 2, 1], [5, 6, 7]], 3, [[0], [0]]),
]
for p, m, expected in cases:
check_polyder(np.array(p).T, m, np.array(expected).T)
#--------------------------------------------------------------------
# savgol_coeffs tests
#--------------------------------------------------------------------
def alt_sg_coeffs(window_length, polyorder, pos):
"""This is an alternative implementation of the SG coefficients.
It uses numpy.polyfit and numpy.polyval. The results should be
equivalent to those of savgol_coeffs(), but this implementation
is slower.
window_length should be odd.
"""
if pos is None:
pos = window_length // 2
t = np.arange(window_length)
unit = (t == pos).astype(int)
h = np.polyval(np.polyfit(t, unit, polyorder), t)
return h
def test_sg_coeffs_trivial():
# Test a trivial case of savgol_coeffs: polyorder = window_length - 1
h = savgol_coeffs(1, 0)
xp_assert_close(h, [1.0])
h = savgol_coeffs(3, 2)
xp_assert_close(h, [0.0, 1, 0], atol=1e-10)
h = savgol_coeffs(5, 4)
xp_assert_close(h, [0.0, 0, 1, 0, 0], atol=1e-10)
h = savgol_coeffs(5, 4, pos=1)
xp_assert_close(h, [0.0, 0, 0, 1, 0], atol=1e-10)
h = savgol_coeffs(5, 4, pos=1, use='dot')
xp_assert_close(h, [0.0, 1, 0, 0, 0], atol=1e-10)
def compare_coeffs_to_alt(window_length, order):
# For the given window_length and order, compare the results
# of savgol_coeffs and alt_sg_coeffs for pos from 0 to window_length - 1.
# Also include pos=None.
for pos in [None] + list(range(window_length)):
h1 = savgol_coeffs(window_length, order, pos=pos, use='dot')
h2 = alt_sg_coeffs(window_length, order, pos=pos)
xp_assert_close(
h1, h2, atol=1e-10,
err_msg=f"window_length = {window_length}, order = {order}, pos = {pos}"
)
def test_sg_coeffs_compare():
# Compare savgol_coeffs() to alt_sg_coeffs().
for window_length in range(1, 8, 2):
for order in range(window_length):
compare_coeffs_to_alt(window_length, order)
def test_sg_coeffs_exact():
polyorder = 4
window_length = 9
halflen = window_length // 2
x = np.linspace(0, 21, 43)
delta = x[1] - x[0]
# The data is a cubic polynomial. We'll use an order 4
# SG filter, so the filtered values should equal the input data
# (except within half window_length of the edges).
y = 0.5 * x ** 3 - x
h = savgol_coeffs(window_length, polyorder)
y0 = convolve1d(y, h)
xp_assert_close(y0[halflen:-halflen], y[halflen:-halflen])
# Check the same input, but use deriv=1. dy is the exact result.
dy = 1.5 * x ** 2 - 1
h = savgol_coeffs(window_length, polyorder, deriv=1, delta=delta)
y1 = convolve1d(y, h)
xp_assert_close(y1[halflen:-halflen], dy[halflen:-halflen])
# Check the same input, but use deriv=2. d2y is the exact result.
d2y = 3.0 * x
h = savgol_coeffs(window_length, polyorder, deriv=2, delta=delta)
y2 = convolve1d(y, h)
xp_assert_close(y2[halflen:-halflen], d2y[halflen:-halflen])
def test_sg_coeffs_deriv():
# The data in `x` is a sampled parabola, so using savgol_coeffs with an
# order 2 or higher polynomial should give exact results.
i = np.array([-2.0, 0.0, 2.0, 4.0, 6.0])
x = i ** 2 / 4
dx = i / 2
d2x = np.full_like(i, 0.5)
for pos in range(x.size):
coeffs0 = savgol_coeffs(5, 3, pos=pos, delta=2.0, use='dot')
xp_assert_close(coeffs0.dot(x), x[pos], atol=1e-10)
coeffs1 = savgol_coeffs(5, 3, pos=pos, delta=2.0, use='dot', deriv=1)
xp_assert_close(coeffs1.dot(x), dx[pos], atol=1e-10)
coeffs2 = savgol_coeffs(5, 3, pos=pos, delta=2.0, use='dot', deriv=2)
xp_assert_close(coeffs2.dot(x), d2x[pos], atol=1e-10)
def test_sg_coeffs_deriv_gt_polyorder():
"""
If deriv > polyorder, the coefficients should be all 0.
This is a regression test for a bug where, e.g.,
savgol_coeffs(5, polyorder=1, deriv=2)
raised an error.
"""
coeffs = savgol_coeffs(5, polyorder=1, deriv=2)
assert_array_equal(coeffs, np.zeros(5))
coeffs = savgol_coeffs(7, polyorder=4, deriv=6)
assert_array_equal(coeffs, np.zeros(7))
def test_sg_coeffs_large():
# Test that for large values of window_length and polyorder the array of
# coefficients returned is symmetric. The aim is to ensure that
# no potential numeric overflow occurs.
coeffs0 = savgol_coeffs(31, 9)
assert_array_almost_equal(coeffs0, coeffs0[::-1])
coeffs1 = savgol_coeffs(31, 9, deriv=1)
assert_array_almost_equal(coeffs1, -coeffs1[::-1])
# --------------------------------------------------------------------
# savgol_coeffs tests for even window length
# --------------------------------------------------------------------
def test_sg_coeffs_even_window_length():
# Simple case - deriv=0, polyorder=0, 1
window_lengths = [4, 6, 8, 10, 12, 14, 16]
for length in window_lengths:
h_p_d = savgol_coeffs(length, 0, 0)
xp_assert_close(h_p_d, np.ones_like(h_p_d) / length)
# Verify with closed forms
# deriv=1, polyorder=1, 2
def h_p_d_closed_form_1(k, m):
return 6*(k - 0.5)/((2*m + 1)*m*(2*m - 1))
# deriv=2, polyorder=2
def h_p_d_closed_form_2(k, m):
numer = 15*(-4*m**2 + 1 + 12*(k - 0.5)**2)
denom = 4*(2*m + 1)*(m + 1)*m*(m - 1)*(2*m - 1)
return numer/denom
for length in window_lengths:
m = length//2
expected_output = [h_p_d_closed_form_1(k, m)
for k in range(-m + 1, m + 1)][::-1]
actual_output = savgol_coeffs(length, 1, 1)
xp_assert_close(expected_output, actual_output)
actual_output = savgol_coeffs(length, 2, 1)
xp_assert_close(expected_output, actual_output)
expected_output = [h_p_d_closed_form_2(k, m)
for k in range(-m + 1, m + 1)][::-1]
actual_output = savgol_coeffs(length, 2, 2)
xp_assert_close(expected_output, actual_output)
actual_output = savgol_coeffs(length, 3, 2)
xp_assert_close(expected_output, actual_output)
#--------------------------------------------------------------------
# savgol_filter tests
#--------------------------------------------------------------------
def test_sg_filter_trivial():
""" Test some trivial edge cases for savgol_filter()."""
x = np.array([1.0])
y = savgol_filter(x, 1, 0)
assert_equal(y, [1.0])
# Input is a single value. With a window length of 3 and polyorder 1,
# the value in y is from the straight-line fit of (-1,0), (0,3) and
# (1, 0) at 0. This is just the average of the three values, hence 1.0.
x = np.array([3.0])
y = savgol_filter(x, 3, 1, mode='constant')
assert_almost_equal(y, [1.0], decimal=15)
x = np.array([3.0])
y = savgol_filter(x, 3, 1, mode='nearest')
assert_almost_equal(y, [3.0], decimal=15)
x = np.array([1.0] * 3)
y = savgol_filter(x, 3, 1, mode='wrap')
assert_almost_equal(y, [1.0, 1.0, 1.0], decimal=15)
def test_sg_filter_basic():
# Some basic test cases for savgol_filter().
x = np.array([1.0, 2.0, 1.0])
y = savgol_filter(x, 3, 1, mode='constant')
xp_assert_close(y, [1.0, 4.0 / 3, 1.0])
y = savgol_filter(x, 3, 1, mode='mirror')
xp_assert_close(y, [5.0 / 3, 4.0 / 3, 5.0 / 3])
y = savgol_filter(x, 3, 1, mode='wrap')
xp_assert_close(y, [4.0 / 3, 4.0 / 3, 4.0 / 3])
def test_sg_filter_2d():
x = np.array([[1.0, 2.0, 1.0],
[2.0, 4.0, 2.0]])
expected = np.array([[1.0, 4.0 / 3, 1.0],
[2.0, 8.0 / 3, 2.0]])
y = savgol_filter(x, 3, 1, mode='constant')
xp_assert_close(y, expected)
y = savgol_filter(x.T, 3, 1, mode='constant', axis=0)
xp_assert_close(y, expected.T)
def test_sg_filter_interp_edges():
# Another test with low degree polynomial data, for which we can easily
# give the exact results. In this test, we use mode='interp', so
# savgol_filter should match the exact solution for the entire data set,
# including the edges.
t = np.linspace(-5, 5, 21)
delta = t[1] - t[0]
# Polynomial test data.
x = np.array([t,
3 * t ** 2,
t ** 3 - t])
dx = np.array([np.ones_like(t),
6 * t,
3 * t ** 2 - 1.0])
d2x = np.array([np.zeros_like(t),
np.full_like(t, 6),
6 * t])
window_length = 7
y = savgol_filter(x, window_length, 3, axis=-1, mode='interp')
xp_assert_close(y, x, atol=1e-12)
y1 = savgol_filter(x, window_length, 3, axis=-1, mode='interp',
deriv=1, delta=delta)
xp_assert_close(y1, dx, atol=1e-12)
y2 = savgol_filter(x, window_length, 3, axis=-1, mode='interp',
deriv=2, delta=delta)
xp_assert_close(y2, d2x, atol=1e-12)
# Transpose everything, and test again with axis=0.
x = x.T
dx = dx.T
d2x = d2x.T
y = savgol_filter(x, window_length, 3, axis=0, mode='interp')
xp_assert_close(y, x, atol=1e-12)
y1 = savgol_filter(x, window_length, 3, axis=0, mode='interp',
deriv=1, delta=delta)
xp_assert_close(y1, dx, atol=1e-12)
y2 = savgol_filter(x, window_length, 3, axis=0, mode='interp',
deriv=2, delta=delta)
xp_assert_close(y2, d2x, atol=1e-12)
def test_sg_filter_interp_edges_3d():
# Test mode='interp' with a 3-D array.
t = np.linspace(-5, 5, 21)
delta = t[1] - t[0]
x1 = np.array([t, -t])
x2 = np.array([t ** 2, 3 * t ** 2 + 5])
x3 = np.array([t ** 3, 2 * t ** 3 + t ** 2 - 0.5 * t])
dx1 = np.array([np.ones_like(t), -np.ones_like(t)])
dx2 = np.array([2 * t, 6 * t])
dx3 = np.array([3 * t ** 2, 6 * t ** 2 + 2 * t - 0.5])
# z has shape (3, 2, 21)
z = np.array([x1, x2, x3])
dz = np.array([dx1, dx2, dx3])
y = savgol_filter(z, 7, 3, axis=-1, mode='interp', delta=delta)
xp_assert_close(y, z, atol=1e-10)
dy = savgol_filter(z, 7, 3, axis=-1, mode='interp', deriv=1, delta=delta)
xp_assert_close(dy, dz, atol=1e-10)
# z has shape (3, 21, 2)
z = np.array([x1.T, x2.T, x3.T])
dz = np.array([dx1.T, dx2.T, dx3.T])
y = savgol_filter(z, 7, 3, axis=1, mode='interp', delta=delta)
xp_assert_close(y, z, atol=1e-10)
dy = savgol_filter(z, 7, 3, axis=1, mode='interp', deriv=1, delta=delta)
xp_assert_close(dy, dz, atol=1e-10)
# z has shape (21, 3, 2)
z = z.swapaxes(0, 1).copy()
dz = dz.swapaxes(0, 1).copy()
y = savgol_filter(z, 7, 3, axis=0, mode='interp', delta=delta)
xp_assert_close(y, z, atol=1e-10)
dy = savgol_filter(z, 7, 3, axis=0, mode='interp', deriv=1, delta=delta)
xp_assert_close(dy, dz, atol=1e-10)
def test_sg_filter_valid_window_length_3d():
"""Tests that the window_length check is using the correct axis."""
x = np.ones((10, 20, 30))
savgol_filter(x, window_length=29, polyorder=3, mode='interp')
with pytest.raises(ValueError, match='window_length must be less than'):
# window_length is more than x.shape[-1].
savgol_filter(x, window_length=31, polyorder=3, mode='interp')
savgol_filter(x, window_length=9, polyorder=3, axis=0, mode='interp')
with pytest.raises(ValueError, match='window_length must be less than'):
# window_length is more than x.shape[0].
savgol_filter(x, window_length=11, polyorder=3, axis=0, mode='interp')

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,427 @@
# pylint: disable=missing-docstring
import math
import numpy as np
import pytest
import scipy._lib.array_api_extra as xpx
from scipy._lib._array_api import is_cupy, xp_assert_close, xp_default_dtype
from scipy.signal._spline import (
symiirorder1_ic, symiirorder2_ic_fwd, symiirorder2_ic_bwd)
from scipy.signal import symiirorder1, symiirorder2
skip_xp_backends = pytest.mark.skip_xp_backends
xfail_xp_backends = pytest.mark.xfail_xp_backends
def npr(xp, *args):
return xp.concat(tuple(xpx.atleast_nd(x, ndim=1, xp=xp) for x in args))
def _compute_symiirorder2_bwd_hs(k, cs, rsq, omega):
cssq = cs * cs
k = np.abs(k)
rsupk = np.power(rsq, k / 2.0)
c0 = (cssq * (1.0 + rsq) / (1.0 - rsq) /
(1 - 2 * rsq * np.cos(2 * omega) + rsq * rsq))
gamma = (1.0 - rsq) / (1.0 + rsq) / np.tan(omega)
return c0 * rsupk * (np.cos(omega * k) + gamma * np.sin(omega * k))
class TestSymIIR:
@skip_xp_backends(np_only=True, reason="_ic functions are private and numpy-only")
@pytest.mark.parametrize(
'dtype', ['float32', 'float64', 'complex64', 'complex128'])
@pytest.mark.parametrize('precision', [-1.0, 0.7, 0.5, 0.25, 0.0075])
def test_symiir1_ic(self, dtype, precision, xp):
dtype = getattr(xp, dtype)
c_precision = precision
if precision <= 0.0 or precision > 1.0:
if dtype in {xp.float32, xp.complex64}:
c_precision = 1e-6
else:
c_precision = 1e-11
# Symmetrical initial conditions for a IIR filter of order 1 are:
# x[0] + z1 * \sum{k = 0}^{n - 1} x[k] * z1^k
# Check the initial condition for a low-pass filter
# with coefficient b = 0.85 on a step signal. The initial condition is
# a geometric series: 1 + b * \sum_{k = 0}^{n - 1} u[k] b^k.
# Finding the initial condition corresponds to
# 1. Computing the index n such that b**n < precision, which
# corresponds to ceil(log(precision) / log(b))
# 2. Computing the geometric series until n, this can be computed
# using the partial sum formula: (1 - b**n) / (1 - b)
# This holds due to the input being a step signal.
b = 0.85
n_exp = int(math.ceil(math.log(c_precision) / math.log(b)))
expected = xp.asarray([[(1 - b ** n_exp) / (1 - b)]], dtype=dtype)
expected = 1 + b * expected
# Create a step signal of size n + 1
x = xp.ones(n_exp + 1, dtype=dtype)
xp_assert_close(symiirorder1_ic(x, b, precision), expected,
atol=2e-6, rtol=2e-7)
# Check the conditions for a exponential decreasing signal with base 2.
# Same conditions hold, as the product of 0.5^n * 0.85^n is
# still a geometric series
b_d = xp.asarray(b, dtype=dtype)
expected = np.asarray(
[[(1 - (0.5 * b_d) ** n_exp) / (1 - (0.5 * b_d))]], dtype=dtype)
expected = 1 + b_d * expected
# Create an exponential decreasing signal of size n + 1
x = 2 ** -xp.arange(n_exp + 1, dtype=dtype)
xp_assert_close(symiirorder1_ic(x, b, precision), expected,
atol=2e-6, rtol=2e-7)
@skip_xp_backends(np_only=True, reason="_ic functions are private and numpy-only")
def test_symiir1_ic_fails(self, xp):
# Test that symiirorder1_ic fails whenever \sum_{n = 1}^{n} b^n > eps
b = 0.85
# Create a step signal of size 100
x = xp.ones(100, dtype=xp.float64)
# Compute the closed form for the geometrical series
precision = 1 / (1 - b)
pytest.raises(ValueError, symiirorder1_ic, x, b, precision)
# Test that symiirorder1_ic fails when |z1| >= 1
pytest.raises(ValueError, symiirorder1_ic, x, 1.0, -1)
pytest.raises(ValueError, symiirorder1_ic, x, 2.0, -1)
@skip_xp_backends(
cpu_only=True, exceptions=["cupy"], reason="internals are numpy-only"
)
@xfail_xp_backends("cupy", reason="sum did not converge")
@skip_xp_backends("jax.numpy", reason="item assignment in tests")
@pytest.mark.parametrize(
'dtype', ['float32', 'float64', 'complex64', 'complex128'])
@pytest.mark.parametrize('precision', [-1.0, 0.7, 0.5, 0.25, 0.0075])
def test_symiir1(self, dtype, precision, xp):
dtype = getattr(xp, dtype)
c_precision = precision
if precision <= 0.0 or precision > 1.0:
if dtype in {xp.float32, xp.complex64}:
c_precision = 1e-6
else:
c_precision = 1e-11
# Test for a low-pass filter with c0 = 0.15 and z1 = 0.85
# using an unit step over 200 samples.
c0 = 0.15
z1 = 0.85
n = 200
signal = xp.ones(n, dtype=dtype)
# Find the initial condition. See test_symiir1_ic for a detailed
# explanation
n_exp = int(math.ceil(math.log(c_precision) / math.log(z1)))
initial = xp.asarray((1 - z1 ** n_exp) / (1 - z1), dtype=dtype)
initial = 1 + z1 * initial
# Forward pass
# The transfer function for the system 1 / (1 - z1 * z^-1) when
# applied to an unit step with initial conditions y0 is
# 1 / (1 - z1 * z^-1) * (z^-1 / (1 - z^-1) + y0)
# Solving the inverse Z-transform for the given expression yields:
# y[n] = y0 * z1**n * u[n] +
# -z1 / (1 - z1) * z1**(k - 1) * u[k - 1] +
# 1 / (1 - z1) * u[k - 1]
# d is the Kronecker delta function, and u is the unit step
# y0 * z1**n * u[n]
pos = xp.astype(xp.arange(n), dtype)
comp1 = initial * z1**pos
# -z1 / (1 - z1) * z1**(k - 1) * u[k - 1]
comp2 = xp.zeros(n, dtype=dtype)
comp2[1:] = -z1 / (1 - z1) * z1**pos[:-1]
# 1 / (1 - z1) * u[k - 1]
comp3 = xp.zeros(n, dtype=dtype)
comp3[1:] = 1 / (1 - z1)
expected_fwd = comp1 + comp2 + comp3
# Reverse condition
sym_cond = -c0 / (z1 - 1.0) * expected_fwd[-1]
# Backward pass
# The transfer function for the forward result is equivalent to
# the forward system times c0 / (1 - z1 * z).
# Computing a closed form for the complete expression is difficult
# The result will be computed iteratively from the difference equation
exp_out = xp.zeros(n, dtype=dtype)
exp_out[0] = sym_cond
for i in range(1, n):
exp_out[i] = c0 * expected_fwd[n - 1 - i] + z1 * exp_out[i - 1]
exp_out = xp.flip(exp_out)
out = symiirorder1(signal, c0, z1, precision)
xp_assert_close(out, exp_out, atol=4e-6, rtol=6e-7)
@xfail_xp_backends("cupy", reason="sum did not converge")
@skip_xp_backends(
cpu_only=True, exceptions=["cupy"], reason="internals are numpy-only"
)
@pytest.mark.parametrize('dtype', ['float32', 'float64'])
def test_symiir1_values(self, dtype, xp):
rng = np.random.RandomState(1234)
s = rng.uniform(size=16).astype(dtype)
dtype = getattr(xp, dtype)
s = xp.asarray(s)
res = symiirorder1(s, 0.5, 0.1)
# values from scipy 1.9.1
exp_res = xp.asarray([
0.14387447, 0.35166047, 0.29735238, 0.46295986, 0.45174927,
0.19982875, 0.20355805, 0.47378628, 0.57232247, 0.51597393,
0.25935107, 0.31438554, 0.41096728, 0.4190693 , 0.25812255,
0.33671467], dtype=res.dtype)
atol = {xp.float64: 1e-15, xp.float32: 1e-7}[dtype]
xp_assert_close(res, exp_res, atol=atol)
I1 = xp.asarray(
1 + 1j, dtype=xp.result_type(s, xp.complex64)
)
s = s * I1
res = symiirorder1(s, 0.5, 0.1)
assert res.dtype == xp.complex64 if dtype == xp.float32 else xp.complex128
xp_assert_close(res, I1 * exp_res, atol=atol)
@skip_xp_backends(np_only=True,
reason="_initial_fwd functions are private and numpy-only")
@pytest.mark.parametrize(
'dtype', ['float32', 'float64'])
@pytest.mark.parametrize('precision', [-1.0, 0.7, 0.5, 0.25, 0.0075])
def test_symiir2_initial_fwd(self, dtype, precision, xp):
dtype = getattr(xp, dtype)
c_precision = precision
if precision <= 0.0 or precision > 1.0:
if dtype in {xp.float32, xp.complex64}:
c_precision = 1e-6
else:
c_precision = 1e-11
# Compute the initial conditions for a order-two symmetrical low-pass
# filter with r = 0.5 and omega = pi / 3 for an unit step input.
r = xp.asarray(0.5, dtype=dtype)
omega = xp.asarray(np.pi / 3.0, dtype=dtype)
cs = 1 - 2 * r * xp.cos(omega) + r**2
# The index n for the initial condition is bound from 0 to the
# first position where sin(omega * (n + 2)) = 0 => omega * (n + 2) = pi
# For omega = pi / 3, the maximum initial condition occurs when
# sqrt(3) / 2 * r**n < precision.
# => n = log(2 * sqrt(3) / 3 * precision) / log(r)
ub = xp.ceil(xp.log(c_precision / xp.sin(omega)) / math.log(c_precision))
lb = xp.ceil(math.pi / omega) - 2
n_exp = min(ub, lb)
# The forward initial condition for a filter of order two is:
# \frac{cs}{\sin(\omega)} \sum_{n = 0}^{N - 1} {
# r^(n + 1) \sin{\omega(n + 2)}} + cs
# The closed expression for this sum is:
# s[n] = 2 * r * np.cos(omega) -
# r**2 - r**(n + 2) * np.sin(omega * (n + 3)) / np.sin(omega) +
# r**(n + 3) * np.sin(omega * (n + 2)) / np.sin(omega) + cs
fwd_initial_1 = (
cs +
2 * r * xp.cos(omega) -
r**2 -
r**(n_exp + 2) * xp.sin(omega * (n_exp + 3)) / xp.sin(omega) +
r**(n_exp + 3) * xp.sin(omega * (n_exp + 2)) / xp.sin(omega))
# The second initial condition is given by
# s[n] = 1 / np.sin(omega) * (
# r**2 * np.sin(3 * omega) -
# r**3 * np.sin(2 * omega) -
# r**(n + 3) * np.sin(omega * (n + 4)) +
# r**(n + 4) * np.sin(omega * (n + 3)))
ub = xp.ceil(xp.log(c_precision / xp.sin(omega)) / math.log(c_precision))
lb = xp.ceil(xp.pi / omega) - 3
n_exp = min(ub, lb)
fwd_initial_2 = (
cs + cs * 2 * r * xp.cos(omega) +
(r**2 * xp.sin(3 * omega) -
r**3 * xp.sin(2 * omega) -
r**(n_exp + 3) * xp.sin(omega * (n_exp + 4)) +
r**(n_exp + 4) * xp.sin(omega * (n_exp + 3))) / xp.sin(omega))
expected = npr(xp, fwd_initial_1, fwd_initial_2)[None, :]
expected = xp.astype(expected, dtype)
n = 100
signal = np.ones(n, dtype=dtype)
out = symiirorder2_ic_fwd(signal, r, omega, precision)
xp_assert_close(out, expected, atol=4e-6, rtol=6e-7)
@skip_xp_backends(np_only=True,
reason="_initial_bwd functions are private and numpy-only")
@pytest.mark.parametrize(
'dtype', ['float32', 'float64'])
@pytest.mark.parametrize('precision', [-1.0, 0.7, 0.5, 0.25, 0.0075])
def test_symiir2_initial_bwd(self, dtype, precision, xp):
dtype = getattr(xp, dtype)
c_precision = precision
if precision <= 0.0 or precision > 1.0:
if dtype in {xp.float32, xp.complex64}:
c_precision = 1e-6
else:
c_precision = 1e-11
r = xp.asarray(0.5, dtype=dtype)
omega = xp.asarray(xp.pi / 3.0, dtype=dtype)
cs = 1 - 2 * r * xp.cos(omega) + r * r
a2 = 2 * r * xp.cos(omega)
a3 = -r * r
n = 100
signal = xp.ones(n, dtype=dtype)
# Compute initial forward conditions
ic = symiirorder2_ic_fwd(signal, r, omega, precision)
out = xp.zeros(n + 2, dtype=dtype)
out[:2] = ic[0]
# Apply the forward system cs / (1 - a2 * z^-1 - a3 * z^-2))
for i in range(2, n + 2):
out[i] = cs * signal[i - 2] + a2 * out[i - 1] + a3 * out[i - 2]
# Find the backward initial conditions
ic2 = xp.zeros(2, dtype=dtype)
idx = xp.arange(n)
diff = (_compute_symiirorder2_bwd_hs(idx, cs, r * r, omega) +
_compute_symiirorder2_bwd_hs(idx + 1, cs, r * r, omega))
ic2_0_all = np.cumsum(diff * out[:1:-1])
pos = xp.nonzero(diff ** 2 < c_precision)[0]
ic2[0] = ic2_0_all[pos[0]]
diff = (_compute_symiirorder2_bwd_hs(idx - 1, cs, r * r, omega) +
_compute_symiirorder2_bwd_hs(idx + 2, cs, r * r, omega))
ic2_1_all = xp.cumulative_sum(diff * out[:1:-1])
pos = xp.nonzero(diff ** 2 < c_precision)[0]
ic2[1] = ic2_1_all[pos[0]]
out_ic = symiirorder2_ic_bwd(out, r, omega, precision)[0]
xp_assert_close(out_ic, ic2, atol=4e-6, rtol=6e-7)
@skip_xp_backends(cpu_only=True, reason="internals are numpy-only")
@skip_xp_backends("jax.numpy", reason="item assignment in tests")
@pytest.mark.parametrize(
'dtype', ['float32', 'float64'])
@pytest.mark.parametrize('precision', [-1.0, 0.7, 0.5, 0.25, 0.0075])
def test_symiir2(self, dtype, precision, xp):
dtype = getattr(xp, dtype)
r = 0.5
omega = math.pi / 3.0
cs = 1 - 2 * r * math.cos(omega) + r * r
a2 = 2 * r * math.cos(omega)
a3 = -r * r
n = 100
signal = xp.ones(n, dtype=dtype)
# Compute initial forward conditions
signal_np = np.asarray(signal)
ic = symiirorder2_ic_fwd(signal_np, r, omega, precision)
ic = xp.asarray(ic)
out1 = xp.zeros(n + 2, dtype=dtype)
out1[:2] = ic[0, :]
# Apply the forward system cs / (1 - a2 * z^-1 - a3 * z^-2))
for i in range(2, n + 2):
out1[i] = cs * signal[i - 2] + a2 * out1[i - 1] + a3 * out1[i - 2]
# Find the backward initial conditions
ic2 = symiirorder2_ic_bwd(np.asarray(out1), r, omega, precision)[0]
ic2 = xp.asarray(ic2)
# Apply the system cs / (1 - a2 * z - a3 * z^2)) in backwards
exp = xp.empty(n, dtype=dtype)
exp[-2:] = xp.flip(ic2)
for i in range(n - 3, -1, -1):
exp[i] = cs * out1[i] + a2 * exp[i + 1] + a3 * exp[i + 2]
out = symiirorder2(signal, r, omega, precision)
xp_assert_close(out, exp, atol=4e-6, rtol=6e-7)
@skip_xp_backends(cpu_only=True, exceptions=["cupy"], reason="C internals")
@pytest.mark.parametrize('dtyp', ['float32', 'float64'])
def test_symiir2_values(self, dtyp, xp):
rng = np.random.RandomState(1234)
s = rng.uniform(size=16).astype(dtyp)
s = xp.asarray(s)
# cupy returns f64 for f32 inputs
dtype = xp.float64 if is_cupy(xp) else getattr(xp, dtyp)
res = symiirorder2(s, 0.1, 0.1, precision=1e-10)
# values from scipy 1.9.1
exp_res = xp.asarray(
[0.26572609, 0.53408018, 0.51032696, 0.72115829, 0.69486885,
0.3649055 , 0.37349478, 0.74165032, 0.89718521, 0.80582483,
0.46758053, 0.51898709, 0.65025605, 0.65394321, 0.45273595,
0.53539183], dtype=dtype
)
# The values in SciPy 1.14 agree with those in SciPy 1.9.1 to this
# accuracy only. Implementation differences are twofold:
# 1. boundary conditions are computed differently
# 2. the filter itself uses sosfilt instead of a hardcoded iteration
# The boundary conditions seem are tested separately (see
# test_symiir2_initial_{fwd,bwd} above, so the difference is likely
# due to a different way roundoff errors accumulate in the filter.
# In that respect, sosfilt is likely doing a better job.
xp_assert_close(res, exp_res, atol=2e-6)
I1 = xp.asarray(1 + 1j, dtype=xp.result_type(s, xp.complex64))
s = s * I1
with pytest.raises((TypeError, ValueError)):
res = symiirorder2(s, 0.5, 0.1)
@skip_xp_backends(cpu_only=True, exceptions=["cupy"], reason="C internals")
@xfail_xp_backends("cupy", reason="cupy does not accept integer arrays")
def test_symiir1_integer_input(self, xp):
s = xp.where(
xp.astype(xp.arange(100) % 2, xp.bool),
xp.asarray(-1),
xp.asarray(1),
)
expected = symiirorder1(xp.astype(s, xp_default_dtype(xp)), 0.5, 0.5)
out = symiirorder1(s, 0.5, 0.5)
xp_assert_close(out, expected)
@skip_xp_backends(cpu_only=True, exceptions=["cupy"], reason="C internals")
@xfail_xp_backends("cupy", reason="cupy does not accept integer arrays")
def test_symiir2_integer_input(self, xp):
s = xp.where(
xp.astype(xp.arange(100) % 2, xp.bool),
xp.asarray(-1),
xp.asarray(1),
)
expected = symiirorder2(xp.astype(s, xp_default_dtype(xp)), 0.5, xp.pi / 3.0)
out = symiirorder2(s, 0.5, xp.pi / 3.0)
xp_assert_close(out, expected)

View file

@ -0,0 +1,322 @@
# Code adapted from "upfirdn" python library with permission:
#
# Copyright (c) 2009, Motorola, Inc
#
# All Rights Reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# * Neither the name of Motorola nor the names of its contributors may be
# used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
# THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy as np
from itertools import product
from pytest import raises as assert_raises
import pytest
from scipy._lib import array_api_extra as xpx
from scipy._lib._array_api import (
xp_assert_close, array_namespace
)
from scipy.signal import upfirdn, firwin
from scipy.signal._upfirdn import _output_len, _upfirdn_modes
from scipy.signal._upfirdn_apply import _pad_test
skip_xp_backends = pytest.mark.skip_xp_backends
def upfirdn_naive(x, h, up=1, down=1):
"""Naive upfirdn processing in Python.
Note: arg order (x, h) differs to facilitate apply_along_axis use.
"""
x = np.asarray(x)
h = np.asarray(h)
out = np.zeros(len(x) * up, x.dtype)
out[::up] = x
out = np.convolve(h, out)[::down][:_output_len(len(h), len(x), up, down)]
return out
class UpFIRDnCase:
"""Test _UpFIRDn object"""
def __init__(self, up, down, h, x_dtype):
self.up = up
self.down = down
self.h = np.atleast_1d(h)
self.x_dtype = x_dtype
self.rng = np.random.RandomState(17)
def __call__(self):
# tiny signal
self.scrub(np.ones(1, self.x_dtype))
# ones
self.scrub(np.ones(10, self.x_dtype)) # ones
# randn
x = self.rng.randn(10).astype(self.x_dtype)
if self.x_dtype in (np.complex64, np.complex128):
x += 1j * self.rng.randn(10)
self.scrub(x)
# ramp
self.scrub(np.arange(10).astype(self.x_dtype))
# 3D, random
size = (2, 3, 5)
x = self.rng.randn(*size).astype(self.x_dtype)
if self.x_dtype in (np.complex64, np.complex128):
x += 1j * self.rng.randn(*size)
for axis in range(len(size)):
self.scrub(x, axis=axis)
x = x[:, ::2, 1::3].T
for axis in range(len(size)):
self.scrub(x, axis=axis)
def scrub(self, x, axis=-1):
yr = np.apply_along_axis(upfirdn_naive, axis, x,
self.h, self.up, self.down)
want_len = _output_len(len(self.h), x.shape[axis], self.up, self.down)
assert yr.shape[axis] == want_len
y = upfirdn(self.h, x, self.up, self.down, axis=axis)
assert y.shape[axis] == want_len
assert y.shape == yr.shape
dtypes = (self.h.dtype, x.dtype)
if all(d == np.complex64 for d in dtypes):
assert y.dtype == np.complex64
elif np.complex64 in dtypes and np.float32 in dtypes:
assert y.dtype == np.complex64
elif all(d == np.float32 for d in dtypes):
assert y.dtype == np.float32
elif np.complex128 in dtypes or np.complex64 in dtypes:
assert y.dtype == np.complex128
else:
assert y.dtype == np.float64
xp_assert_close(yr.astype(y.dtype), y)
_UPFIRDN_TYPES = ("int64", "float32", "complex64", "float64", "complex128")
@skip_xp_backends(cpu_only=True, reason='Cython implementation')
class TestUpfirdn:
@skip_xp_backends(np_only=True, reason="enough to only test on numpy")
def test_valid_input(self, xp):
assert_raises(ValueError, upfirdn, [1], [1], 1, 0) # up or down < 1
assert_raises(ValueError, upfirdn, [], [1], 1, 1) # h.ndim != 1
assert_raises(ValueError, upfirdn, [[1]], [1], 1, 1)
@pytest.mark.parametrize('len_h', [1, 2, 3, 4, 5])
@pytest.mark.parametrize('len_x', [1, 2, 3, 4, 5])
def test_singleton(self, len_h, len_x, xp):
# gh-9844: lengths producing expected outputs
h = xp.zeros(len_h)
h = xpx.at(h)[len_h // 2].set(1.) # make h a delta
x = xp.ones(len_x)
y = upfirdn(h, x, 1, 1)
want = xpx.pad(x, (len_h // 2, (len_h - 1) // 2), 'constant', xp=xp)
xp_assert_close(y, want)
def test_shift_x(self, xp):
# gh-9844: shifted x can change values?
y = upfirdn(xp.asarray([1, 1]), xp.asarray([1.]), 1, 1)
xp_assert_close(
y, xp.asarray([1.0, 1.0], dtype=xp.float64) # was [0, 1] in the issue
)
y = upfirdn(xp.asarray([1, 1]), xp.asarray([0., 1.]), 1, 1)
xp_assert_close(y, xp.asarray([0.0, 1.0, 1.0], dtype=xp.float64))
# A bunch of lengths/factors chosen because they exposed differences
# between the "old way" and new way of computing length, and then
# got `expected` from MATLAB
@pytest.mark.parametrize('len_h, len_x, up, down, expected', [
(2, 2, 5, 2, [1, 0, 0, 0]),
(2, 3, 6, 3, [1, 0, 1, 0, 1]),
(2, 4, 4, 3, [1, 0, 0, 0, 1]),
(3, 2, 6, 2, [1, 0, 0, 1, 0]),
(4, 11, 3, 5, [1, 0, 0, 1, 0, 0, 1]),
])
def test_length_factors(self, len_h, len_x, up, down, expected, xp):
# gh-9844: weird factors
h = xp.zeros(len_h)
h = xpx.at(h)[0].set(1.)
x = xp.ones(len_x, dtype=xp.float64)
y = upfirdn(h, x, up, down)
expected = xp.asarray(expected, dtype=xp.float64)
xp_assert_close(y, expected)
@pytest.mark.parametrize(
'dtype', ["int64", "float32", "complex64", "float64", "complex128"]
)
@pytest.mark.parametrize('down, want_len', [ # lengths from MATLAB
(2, 5015),
(11, 912),
(79, 127),
])
def test_vs_convolve(self, down, want_len, dtype, xp):
# Check that up=1.0 gives same answer as convolve + slicing
random_state = np.random.RandomState(17)
size = 10000
np_dtype = getattr(np, dtype)
x = random_state.randn(size).astype(np_dtype)
if np_dtype in (np.complex64, np.complex128):
x += 1j * random_state.randn(size)
dtype = getattr(xp, dtype)
x = xp.asarray(x, dtype=dtype)
h = xp.asarray(firwin(31, 1. / down, window='hamming'))
yl = xp.asarray(upfirdn_naive(x, h, 1, down))
y = upfirdn(h, x, up=1, down=down)
assert y.shape == (want_len,)
assert yl.shape[0] == y.shape[0]
xp_assert_close(yl, y, atol=1e-7, rtol=1e-7)
@skip_xp_backends(np_only=True, reason="apply_along_axis")
@pytest.mark.parametrize('x_dtype', _UPFIRDN_TYPES)
@pytest.mark.parametrize('h', (1., 1j))
@pytest.mark.parametrize('up, down', [(1, 1), (2, 2), (3, 2), (2, 3)])
def test_vs_naive_delta(self, x_dtype, h, up, down, xp):
UpFIRDnCase(up, down, h, x_dtype)()
@skip_xp_backends(np_only=True, reason="apply_along_axis")
@pytest.mark.parametrize('x_dtype', _UPFIRDN_TYPES)
@pytest.mark.parametrize('h_dtype', _UPFIRDN_TYPES)
@pytest.mark.parametrize('p_max, q_max',
list(product((10, 100), (10, 100))))
def test_vs_naive(self, x_dtype, h_dtype, p_max, q_max, xp):
tests = self._random_factors(p_max, q_max, h_dtype, x_dtype)
for test in tests:
test()
def _random_factors(self, p_max, q_max, h_dtype, x_dtype):
n_rep = 3
longest_h = 25
random_state = np.random.RandomState(17)
tests = []
for _ in range(n_rep):
# Randomize the up/down factors somewhat
p_add = q_max if p_max > q_max else 1
q_add = p_max if q_max > p_max else 1
p = random_state.randint(p_max) + p_add
q = random_state.randint(q_max) + q_add
# Generate random FIR coefficients
len_h = random_state.randint(longest_h) + 1
h = np.atleast_1d(random_state.randint(len_h))
h = h.astype(h_dtype)
if h_dtype is complex:
h += 1j * random_state.randint(len_h)
tests.append(UpFIRDnCase(p, q, h, x_dtype))
return tests
@pytest.mark.parametrize('mode', _upfirdn_modes)
def test_extensions(self, mode, xp):
"""Test vs. manually computed results for modes not in numpy's pad."""
x = np.asarray([1, 2, 3, 1], dtype=np.float64)
npre, npost = 6, 6
y = _pad_test(x, npre=npre, npost=npost, mode=mode)
x = xp.asarray(x)
y = xp.asarray(y)
if mode == 'antisymmetric':
y_expected = xp.asarray(
[3.0, 1, -1, -3, -2, -1, 1, 2, 3, 1, -1, -3, -2, -1, 1, 2])
elif mode == 'antireflect':
y_expected = xp.asarray(
[1.0, 2, 3, 1, -1, 0, 1, 2, 3, 1, -1, 0, 1, 2, 3, 1])
elif mode == 'smooth':
y_expected = xp.asarray(
[-5.0, -4, -3, -2, -1, 0, 1, 2, 3, 1, -1, -3, -5, -7, -9, -11])
elif mode == "line":
lin_slope = (x[-1] - x[0]) / (x.shape[0] - 1)
left = x[0] + xp.arange(-npre, 0, 1, dtype=xp.float64) * lin_slope
right = x[-1] + xp.arange(1, npost + 1, dtype=xp.float64) * lin_slope
concat = array_namespace(left).concat
y_expected = concat((left, x, right))
else:
y_expected = np.pad(np.asarray(x), (npre, npost), mode=mode)
y_expected = xp.asarray(y_expected)
y_expected = xp.asarray(y_expected, dtype=xp.float64)
xp_assert_close(y, y_expected)
@pytest.mark.parametrize(
'size, h_len, mode, dtype',
product(
[8],
[4, 5, 26], # include cases with h_len > 2*size
_upfirdn_modes,
["float32", "float64", "complex64", "complex128"],
)
)
def test_modes(self, size, h_len, mode, dtype, xp):
dtype_np = getattr(np, dtype)
dtype_xp = getattr(xp, dtype)
random_state = np.random.RandomState(5)
x = random_state.randn(size).astype(dtype_np)
if dtype in ("complex64", "complex128"):
x += 1j * random_state.randn(size)
h = np.arange(1, 1 + h_len, dtype=x.real.dtype)
x = xp.asarray(x, dtype=dtype_xp)
h = xp.asarray(h)
y = upfirdn(h, x, up=1, down=1, mode=mode)
# expected result: pad the input, filter with zero padding, then crop
npad = h_len - 1
if mode in ['antisymmetric', 'antireflect', 'smooth', 'line']:
# use _pad_test test function for modes not supported by np.pad.
xpad = _pad_test(np.asarray(x), npre=npad, npost=npad, mode=mode)
else:
xpad = np.pad(np.asarray(x), npad, mode=mode)
xpad = xp.asarray(xpad)
ypad = upfirdn(h, xpad, up=1, down=1, mode='constant')
y_expected = ypad[npad:-npad]
atol = rtol = xp.finfo(dtype_xp).eps * 1e2
xp_assert_close(y, y_expected, atol=atol, rtol=rtol)
@skip_xp_backends(cpu_only=True, reason='Cython implementation')
def test_output_len_long_input(xp):
# Regression test for gh-17375. On Windows, a large enough input
# that should have been well within the capabilities of 64 bit integers
# would result in a 32 bit overflow because of a bug in Cython 0.29.32.
len_h = 1001
in_len = 10**8
up = 320
down = 441
out_len = _output_len(len_h, in_len, up, down)
# The expected value was computed "by hand" from the formula
# (((in_len - 1) * up + len_h) - 1) // down + 1
assert out_len == 72562360

View file

@ -0,0 +1,400 @@
import numpy as np
from pytest import raises as assert_raises
from scipy._lib._array_api import (
assert_almost_equal, xp_assert_equal, xp_assert_close
)
import scipy.signal._waveforms as waveforms
# These chirp_* functions are the instantaneous frequencies of the signals
# returned by chirp().
def chirp_linear(t, f0, f1, t1):
f = f0 + (f1 - f0) * t / t1
return f
def chirp_quadratic(t, f0, f1, t1, vertex_zero=True):
if vertex_zero:
f = f0 + (f1 - f0) * t**2 / t1**2
else:
f = f1 - (f1 - f0) * (t1 - t)**2 / t1**2
return f
def chirp_geometric(t, f0, f1, t1):
f = f0 * (f1/f0)**(t/t1)
return f
def chirp_hyperbolic(t, f0, f1, t1):
f = f0*f1*t1 / ((f0 - f1)*t + f1*t1)
return f
def compute_frequency(t, theta):
"""
Compute theta'(t)/(2*pi), where theta'(t) is the derivative of theta(t).
"""
# Assume theta and t are 1-D NumPy arrays.
# Assume that t is uniformly spaced.
dt = t[1] - t[0]
f = np.diff(theta)/(2*np.pi) / dt
tf = 0.5*(t[1:] + t[:-1])
return tf, f
class TestChirp:
def test_linear_at_zero(self):
w = waveforms.chirp(t=0, f0=1.0, f1=2.0, t1=1.0, method='linear')
assert_almost_equal(w, 1.0)
def test_linear_freq_01(self):
method = 'linear'
f0 = 1.0
f1 = 2.0
t1 = 1.0
t = np.linspace(0, t1, 100)
phase = waveforms._chirp_phase(t, f0, t1, f1, method)
tf, f = compute_frequency(t, phase)
abserr = np.max(np.abs(f - chirp_linear(tf, f0, f1, t1)))
assert abserr < 1e-6
def test_linear_freq_02(self):
method = 'linear'
f0 = 200.0
f1 = 100.0
t1 = 10.0
t = np.linspace(0, t1, 100)
phase = waveforms._chirp_phase(t, f0, t1, f1, method)
tf, f = compute_frequency(t, phase)
abserr = np.max(np.abs(f - chirp_linear(tf, f0, f1, t1)))
assert abserr < 1e-6
def test_linear_complex_power(self):
method = 'linear'
f0 = 1.0
f1 = 2.0
t1 = 1.0
t = np.linspace(0, t1, 100)
w_real = waveforms.chirp(t, f0, t1, f1, method, complex=False)
w_complex = waveforms.chirp(t, f0, t1, f1, method, complex=True)
w_pwr_r = np.var(w_real)
w_pwr_c = np.var(w_complex)
# Making sure that power of the real part is not affected with
# complex conversion operation
err = w_pwr_r - np.real(w_pwr_c)
assert(err < 1e-6)
def test_linear_complex_at_zero(self):
w = waveforms.chirp(t=0, f0=-10.0, f1=1.0, t1=1.0, method='linear',
complex=True)
xp_assert_close(w, 1.0+0.0j) # dtype must match
def test_quadratic_at_zero(self):
w = waveforms.chirp(t=0, f0=1.0, f1=2.0, t1=1.0, method='quadratic')
assert_almost_equal(w, 1.0)
def test_quadratic_at_zero2(self):
w = waveforms.chirp(t=0, f0=1.0, f1=2.0, t1=1.0, method='quadratic',
vertex_zero=False)
assert_almost_equal(w, 1.0)
def test_quadratic_complex_at_zero(self):
w = waveforms.chirp(t=0, f0=-1.0, f1=2.0, t1=1.0, method='quadratic',
complex=True)
xp_assert_close(w, 1.0+0j)
def test_quadratic_freq_01(self):
method = 'quadratic'
f0 = 1.0
f1 = 2.0
t1 = 1.0
t = np.linspace(0, t1, 2000)
phase = waveforms._chirp_phase(t, f0, t1, f1, method)
tf, f = compute_frequency(t, phase)
abserr = np.max(np.abs(f - chirp_quadratic(tf, f0, f1, t1)))
assert abserr < 1e-6
def test_quadratic_freq_02(self):
method = 'quadratic'
f0 = 20.0
f1 = 10.0
t1 = 10.0
t = np.linspace(0, t1, 2000)
phase = waveforms._chirp_phase(t, f0, t1, f1, method)
tf, f = compute_frequency(t, phase)
abserr = np.max(np.abs(f - chirp_quadratic(tf, f0, f1, t1)))
assert abserr < 1e-6
def test_logarithmic_at_zero(self):
w = waveforms.chirp(t=0, f0=1.0, f1=2.0, t1=1.0, method='logarithmic')
assert_almost_equal(w, 1.0)
def test_logarithmic_freq_01(self):
method = 'logarithmic'
f0 = 1.0
f1 = 2.0
t1 = 1.0
t = np.linspace(0, t1, 10000)
phase = waveforms._chirp_phase(t, f0, t1, f1, method)
tf, f = compute_frequency(t, phase)
abserr = np.max(np.abs(f - chirp_geometric(tf, f0, f1, t1)))
assert abserr < 1e-6
def test_logarithmic_freq_02(self):
method = 'logarithmic'
f0 = 200.0
f1 = 100.0
t1 = 10.0
t = np.linspace(0, t1, 10000)
phase = waveforms._chirp_phase(t, f0, t1, f1, method)
tf, f = compute_frequency(t, phase)
abserr = np.max(np.abs(f - chirp_geometric(tf, f0, f1, t1)))
assert abserr < 1e-6
def test_logarithmic_freq_03(self):
method = 'logarithmic'
f0 = 100.0
f1 = 100.0
t1 = 10.0
t = np.linspace(0, t1, 10000)
phase = waveforms._chirp_phase(t, f0, t1, f1, method)
tf, f = compute_frequency(t, phase)
abserr = np.max(np.abs(f - chirp_geometric(tf, f0, f1, t1)))
assert abserr < 1e-6
def test_hyperbolic_at_zero(self):
w = waveforms.chirp(t=0, f0=10.0, f1=1.0, t1=1.0, method='hyperbolic')
assert_almost_equal(w, 1.0)
def test_hyperbolic_freq_01(self):
method = 'hyperbolic'
t1 = 1.0
t = np.linspace(0, t1, 10000)
# f0 f1
cases = [[10.0, 1.0],
[1.0, 10.0],
[-10.0, -1.0],
[-1.0, -10.0]]
for f0, f1 in cases:
phase = waveforms._chirp_phase(t, f0, t1, f1, method)
tf, f = compute_frequency(t, phase)
expected = chirp_hyperbolic(tf, f0, f1, t1)
xp_assert_close(f, expected, atol=1e-7)
def test_hyperbolic_zero_freq(self):
# f0=0 or f1=0 must raise a ValueError.
method = 'hyperbolic'
t1 = 1.0
t = np.linspace(0, t1, 5)
assert_raises(ValueError, waveforms.chirp, t, 0, t1, 1, method)
assert_raises(ValueError, waveforms.chirp, t, 1, t1, 0, method)
def test_unknown_method(self):
method = "foo"
f0 = 10.0
f1 = 20.0
t1 = 1.0
t = np.linspace(0, t1, 10)
assert_raises(ValueError, waveforms.chirp, t, f0, t1, f1, method)
def test_integer_t1(self):
f0 = 10.0
f1 = 20.0
t = np.linspace(-1, 1, 11)
t1 = 3.0
float_result = waveforms.chirp(t, f0, t1, f1)
t1 = 3
int_result = waveforms.chirp(t, f0, t1, f1)
err_msg = "Integer input 't1=3' gives wrong result"
xp_assert_equal(int_result, float_result, err_msg=err_msg)
def test_integer_f0(self):
f1 = 20.0
t1 = 3.0
t = np.linspace(-1, 1, 11)
f0 = 10.0
float_result = waveforms.chirp(t, f0, t1, f1)
f0 = 10
int_result = waveforms.chirp(t, f0, t1, f1)
err_msg = "Integer input 'f0=10' gives wrong result"
xp_assert_equal(int_result, float_result, err_msg=err_msg)
def test_integer_f1(self):
f0 = 10.0
t1 = 3.0
t = np.linspace(-1, 1, 11)
f1 = 20.0
float_result = waveforms.chirp(t, f0, t1, f1)
f1 = 20
int_result = waveforms.chirp(t, f0, t1, f1)
err_msg = "Integer input 'f1=20' gives wrong result"
xp_assert_equal(int_result, float_result, err_msg=err_msg)
def test_integer_all(self):
f0 = 10
t1 = 3
f1 = 20
t = np.linspace(-1, 1, 11)
float_result = waveforms.chirp(t, float(f0), float(t1), float(f1))
int_result = waveforms.chirp(t, f0, t1, f1)
err_msg = "Integer input 'f0=10, t1=3, f1=20' gives wrong result"
xp_assert_equal(int_result, float_result, err_msg=err_msg)
class TestSweepPoly:
def test_sweep_poly_quad1(self):
p = np.poly1d([1.0, 0.0, 1.0])
t = np.linspace(0, 3.0, 10000)
phase = waveforms._sweep_poly_phase(t, p)
tf, f = compute_frequency(t, phase)
expected = p(tf)
abserr = np.max(np.abs(f - expected))
assert abserr < 1e-6
def test_sweep_poly_const(self):
p = np.poly1d(2.0)
t = np.linspace(0, 3.0, 10000)
phase = waveforms._sweep_poly_phase(t, p)
tf, f = compute_frequency(t, phase)
expected = p(tf)
abserr = np.max(np.abs(f - expected))
assert abserr < 1e-6
def test_sweep_poly_linear(self):
p = np.poly1d([-1.0, 10.0])
t = np.linspace(0, 3.0, 10000)
phase = waveforms._sweep_poly_phase(t, p)
tf, f = compute_frequency(t, phase)
expected = p(tf)
abserr = np.max(np.abs(f - expected))
assert abserr < 1e-6
def test_sweep_poly_quad2(self):
p = np.poly1d([1.0, 0.0, -2.0])
t = np.linspace(0, 3.0, 10000)
phase = waveforms._sweep_poly_phase(t, p)
tf, f = compute_frequency(t, phase)
expected = p(tf)
abserr = np.max(np.abs(f - expected))
assert abserr < 1e-6
def test_sweep_poly_cubic(self):
p = np.poly1d([2.0, 1.0, 0.0, -2.0])
t = np.linspace(0, 2.0, 10000)
phase = waveforms._sweep_poly_phase(t, p)
tf, f = compute_frequency(t, phase)
expected = p(tf)
abserr = np.max(np.abs(f - expected))
assert abserr < 1e-6
def test_sweep_poly_cubic2(self):
"""Use an array of coefficients instead of a poly1d."""
p = np.array([2.0, 1.0, 0.0, -2.0])
t = np.linspace(0, 2.0, 10000)
phase = waveforms._sweep_poly_phase(t, p)
tf, f = compute_frequency(t, phase)
expected = np.poly1d(p)(tf)
abserr = np.max(np.abs(f - expected))
assert abserr < 1e-6
def test_sweep_poly_cubic3(self):
"""Use a list of coefficients instead of a poly1d."""
p = [2.0, 1.0, 0.0, -2.0]
t = np.linspace(0, 2.0, 10000)
phase = waveforms._sweep_poly_phase(t, p)
tf, f = compute_frequency(t, phase)
expected = np.poly1d(p)(tf)
abserr = np.max(np.abs(f - expected))
assert abserr < 1e-6
class TestGaussPulse:
def test_integer_fc(self):
float_result = waveforms.gausspulse('cutoff', fc=1000.0)
int_result = waveforms.gausspulse('cutoff', fc=1000)
err_msg = "Integer input 'fc=1000' gives wrong result"
xp_assert_equal(int_result, float_result, err_msg=err_msg)
def test_integer_bw(self):
float_result = waveforms.gausspulse('cutoff', bw=1.0)
int_result = waveforms.gausspulse('cutoff', bw=1)
err_msg = "Integer input 'bw=1' gives wrong result"
xp_assert_equal(int_result, float_result, err_msg=err_msg)
def test_integer_bwr(self):
float_result = waveforms.gausspulse('cutoff', bwr=-6.0)
int_result = waveforms.gausspulse('cutoff', bwr=-6)
err_msg = "Integer input 'bwr=-6' gives wrong result"
xp_assert_equal(int_result, float_result, err_msg=err_msg)
def test_integer_tpr(self):
float_result = waveforms.gausspulse('cutoff', tpr=-60.0)
int_result = waveforms.gausspulse('cutoff', tpr=-60)
err_msg = "Integer input 'tpr=-60' gives wrong result"
xp_assert_equal(int_result, float_result, err_msg=err_msg)
class TestUnitImpulse:
def test_no_index(self):
xp_assert_equal(waveforms.unit_impulse(7),
np.asarray([1.0, 0, 0, 0, 0, 0, 0]))
xp_assert_equal(waveforms.unit_impulse((3, 3)),
np.asarray([[1.0, 0, 0], [0, 0, 0], [0, 0, 0]]))
def test_index(self):
xp_assert_equal(waveforms.unit_impulse(10, 3),
np.asarray([0.0, 0, 0, 1, 0, 0, 0, 0, 0, 0]))
xp_assert_equal(waveforms.unit_impulse((3, 3), (1, 1)),
np.asarray([[0.0, 0, 0], [0, 1, 0], [0, 0, 0]]))
# Broadcasting
imp = waveforms.unit_impulse((4, 4), 2)
xp_assert_equal(imp, np.asarray([[0.0, 0, 0, 0],
[0.0, 0, 0, 0],
[0.0, 0, 1, 0],
[0.0, 0, 0, 0]]))
def test_mid(self):
xp_assert_equal(waveforms.unit_impulse((3, 3), 'mid'),
np.asarray([[0.0, 0, 0], [0, 1, 0], [0, 0, 0]]))
xp_assert_equal(waveforms.unit_impulse(9, 'mid'),
np.asarray([0.0, 0, 0, 0, 1, 0, 0, 0, 0]))
def test_dtype(self):
imp = waveforms.unit_impulse(7)
assert np.issubdtype(imp.dtype, np.floating)
imp = waveforms.unit_impulse(5, 3, dtype=int)
assert np.issubdtype(imp.dtype, np.integer)
imp = waveforms.unit_impulse((5, 2), (3, 1), dtype=complex)
assert np.issubdtype(imp.dtype, np.complexfloating)
class TestSawtoothWaveform:
def test_dtype(self):
waveform = waveforms.sawtooth(
np.array(1, dtype=np.float32), width=np.float32(1)
)
assert waveform.dtype == np.float64
waveform = waveforms.sawtooth(1)
assert waveform.dtype == np.float64
class TestSquareWaveform:
def test_dtype(self):
waveform = waveforms.square(np.array(1, dtype=np.float32), duty=np.float32(0.5))
assert waveform.dtype == np.float64
waveform = waveforms.square(1)
assert waveform.dtype == np.float64

View file

@ -0,0 +1,59 @@
import numpy as np
from numpy.testing import assert_array_equal, assert_array_almost_equal
import scipy.signal._wavelets as wavelets
class TestWavelets:
def test_ricker(self):
w = wavelets._ricker(1.0, 1)
expected = 2 / (np.sqrt(3 * 1.0) * (np.pi ** 0.25))
assert_array_equal(w, expected)
lengths = [5, 11, 15, 51, 101]
for length in lengths:
w = wavelets._ricker(length, 1.0)
assert len(w) == length
max_loc = np.argmax(w)
assert max_loc == (length // 2)
points = 100
w = wavelets._ricker(points, 2.0)
half_vec = np.arange(0, points // 2)
# Wavelet should be symmetric
assert_array_almost_equal(w[half_vec], w[-(half_vec + 1)])
# Check zeros
aas = [5, 10, 15, 20, 30]
points = 99
for a in aas:
w = wavelets._ricker(points, a)
vec = np.arange(0, points) - (points - 1.0) / 2
exp_zero1 = np.argmin(np.abs(vec - a))
exp_zero2 = np.argmin(np.abs(vec + a))
assert_array_almost_equal(w[exp_zero1], 0)
assert_array_almost_equal(w[exp_zero2], 0)
def test_cwt(self):
widths = [1.0]
def delta_wavelet(s, t):
return np.array([1])
len_data = 100
test_data = np.sin(np.pi * np.arange(0, len_data) / 10.0)
# Test delta function input gives same data as output
cwt_dat = wavelets._cwt(test_data, delta_wavelet, widths)
assert cwt_dat.shape == (len(widths), len_data)
assert_array_almost_equal(test_data, cwt_dat.flatten())
# Check proper shape on output
widths = [1, 3, 4, 5, 10]
cwt_dat = wavelets._cwt(test_data, wavelets._ricker, widths)
assert cwt_dat.shape == (len(widths), len_data)
widths = [len_data * 10]
# Note: this wavelet isn't defined quite right, but is fine for this test
def flat_wavelet(l, w):
return np.full(w, 1 / w)
cwt_dat = wavelets._cwt(test_data, flat_wavelet, widths)
assert_array_almost_equal(cwt_dat, np.mean(test_data))

File diff suppressed because one or more lines are too long