up follow livre
This commit is contained in:
parent
70a5c3465c
commit
cffb31c1ef
12198 changed files with 2562132 additions and 35 deletions
78
venv/lib/python3.13/site-packages/contourpy/util/data.py
Normal file
78
venv/lib/python3.13/site-packages/contourpy/util/data.py
Normal file
|
|
@ -0,0 +1,78 @@
|
|||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
import numpy as np
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from contourpy._contourpy import CoordinateArray
|
||||
|
||||
|
||||
def simple(
|
||||
shape: tuple[int, int], want_mask: bool = False,
|
||||
) -> tuple[CoordinateArray, CoordinateArray, CoordinateArray | np.ma.MaskedArray[Any, Any]]:
|
||||
"""Return simple test data consisting of the sum of two gaussians.
|
||||
|
||||
Args:
|
||||
shape (tuple(int, int)): 2D shape of data to return.
|
||||
want_mask (bool, optional): Whether test data should be masked or not, default ``False``.
|
||||
|
||||
Return:
|
||||
Tuple of 3 arrays: ``x``, ``y``, ``z`` test data, ``z`` will be masked if
|
||||
``want_mask=True``.
|
||||
"""
|
||||
ny, nx = shape
|
||||
x = np.arange(nx, dtype=np.float64)
|
||||
y = np.arange(ny, dtype=np.float64)
|
||||
x, y = np.meshgrid(x, y)
|
||||
|
||||
xscale = nx - 1.0
|
||||
yscale = ny - 1.0
|
||||
|
||||
# z is sum of 2D gaussians.
|
||||
amp = np.asarray([1.0, -1.0, 0.8, -0.9, 0.7])
|
||||
mid = np.asarray([[0.4, 0.2], [0.3, 0.8], [0.9, 0.75], [0.7, 0.3], [0.05, 0.7]])
|
||||
width = np.asarray([0.4, 0.2, 0.2, 0.2, 0.1])
|
||||
|
||||
z = np.zeros_like(x)
|
||||
for i in range(len(amp)):
|
||||
z += amp[i]*np.exp(-((x/xscale - mid[i, 0])**2 + (y/yscale - mid[i, 1])**2) / width[i]**2)
|
||||
|
||||
if want_mask:
|
||||
mask = np.logical_or(
|
||||
((x/xscale - 1.0)**2 / 0.2 + (y/yscale - 0.0)**2 / 0.1) < 1.0,
|
||||
((x/xscale - 0.2)**2 / 0.02 + (y/yscale - 0.45)**2 / 0.08) < 1.0,
|
||||
)
|
||||
z = np.ma.array(z, mask=mask) # type: ignore[no-untyped-call]
|
||||
|
||||
return x, y, z
|
||||
|
||||
|
||||
def random(
|
||||
shape: tuple[int, int], seed: int = 2187, mask_fraction: float = 0.0,
|
||||
) -> tuple[CoordinateArray, CoordinateArray, CoordinateArray | np.ma.MaskedArray[Any, Any]]:
|
||||
"""Return random test data in the range 0 to 1.
|
||||
|
||||
Args:
|
||||
shape (tuple(int, int)): 2D shape of data to return.
|
||||
seed (int, optional): Seed for random number generator, default 2187.
|
||||
mask_fraction (float, optional): Fraction of elements to mask, default 0.
|
||||
|
||||
Return:
|
||||
Tuple of 3 arrays: ``x``, ``y``, ``z`` test data, ``z`` will be masked if
|
||||
``mask_fraction`` is greater than zero.
|
||||
"""
|
||||
ny, nx = shape
|
||||
x = np.arange(nx, dtype=np.float64)
|
||||
y = np.arange(ny, dtype=np.float64)
|
||||
x, y = np.meshgrid(x, y)
|
||||
|
||||
rng = np.random.default_rng(seed)
|
||||
z = rng.uniform(size=shape)
|
||||
|
||||
if mask_fraction > 0.0:
|
||||
mask_fraction = min(mask_fraction, 0.99)
|
||||
mask = rng.uniform(size=shape) < mask_fraction
|
||||
z = np.ma.array(z, mask=mask) # type: ignore[no-untyped-call]
|
||||
|
||||
return x, y, z
|
||||
Loading…
Add table
Add a link
Reference in a new issue