up follow livre

This commit is contained in:
Tykayn 2025-08-30 18:14:14 +02:00 committed by tykayn
parent 70a5c3465c
commit cffb31c1ef
12198 changed files with 2562132 additions and 35 deletions

View file

@ -0,0 +1,316 @@
"""
=======================================
Signal processing (:mod:`scipy.signal`)
=======================================
Convolution
===========
.. autosummary::
:toctree: generated/
convolve -- N-D convolution.
correlate -- N-D correlation.
fftconvolve -- N-D convolution using the FFT.
oaconvolve -- N-D convolution using the overlap-add method.
convolve2d -- 2-D convolution (more options).
correlate2d -- 2-D correlation (more options).
sepfir2d -- Convolve with a 2-D separable FIR filter.
choose_conv_method -- Chooses faster of FFT and direct convolution methods.
correlation_lags -- Determines lag indices for 1D cross-correlation.
B-splines
=========
.. autosummary::
:toctree: generated/
gauss_spline -- Gaussian approximation to the B-spline basis function.
cspline1d -- Coefficients for 1-D cubic (3rd order) B-spline.
qspline1d -- Coefficients for 1-D quadratic (2nd order) B-spline.
cspline2d -- Coefficients for 2-D cubic (3rd order) B-spline.
qspline2d -- Coefficients for 2-D quadratic (2nd order) B-spline.
cspline1d_eval -- Evaluate a cubic spline at the given points.
qspline1d_eval -- Evaluate a quadratic spline at the given points.
spline_filter -- Smoothing spline (cubic) filtering of a rank-2 array.
Filtering
=========
.. autosummary::
:toctree: generated/
order_filter -- N-D order filter.
medfilt -- N-D median filter.
medfilt2d -- 2-D median filter (faster).
wiener -- N-D Wiener filter.
symiirorder1 -- 2nd-order IIR filter (cascade of first-order systems).
symiirorder2 -- 4th-order IIR filter (cascade of second-order systems).
lfilter -- 1-D FIR and IIR digital linear filtering.
lfiltic -- Construct initial conditions for `lfilter`.
lfilter_zi -- Compute an initial state zi for the lfilter function that
-- corresponds to the steady state of the step response.
filtfilt -- A forward-backward filter.
savgol_filter -- Filter a signal using the Savitzky-Golay filter.
deconvolve -- 1-D deconvolution using lfilter.
sosfilt -- 1-D IIR digital linear filtering using
-- a second-order sections filter representation.
sosfilt_zi -- Compute an initial state zi for the sosfilt function that
-- corresponds to the steady state of the step response.
sosfiltfilt -- A forward-backward filter for second-order sections.
hilbert -- Compute 1-D analytic signal, using the Hilbert transform.
hilbert2 -- Compute 2-D analytic signal, using the Hilbert transform.
envelope -- Compute the envelope of a real- or complex-valued signal.
decimate -- Downsample a signal.
detrend -- Remove linear and/or constant trends from data.
resample -- Resample using Fourier method.
resample_poly -- Resample using polyphase filtering method.
upfirdn -- Upsample, apply FIR filter, downsample.
Filter design
=============
.. autosummary::
:toctree: generated/
bilinear -- Digital filter from an analog filter using
-- the bilinear transform.
bilinear_zpk -- Digital filter from an analog filter using
-- the bilinear transform.
findfreqs -- Find array of frequencies for computing filter response.
firls -- FIR filter design using least-squares error minimization.
firwin -- Windowed FIR filter design, with frequency response
-- defined as pass and stop bands.
firwin2 -- Windowed FIR filter design, with arbitrary frequency
-- response.
firwin_2d -- Windowed FIR filter design, with frequency response for
-- 2D using 1D design.
freqs -- Analog filter frequency response from TF coefficients.
freqs_zpk -- Analog filter frequency response from ZPK coefficients.
freqz -- Digital filter frequency response from TF coefficients.
sosfreqz -- Digital filter frequency response for SOS format filter (legacy).
freqz_sos -- Digital filter frequency response for SOS format filter.
freqz_zpk -- Digital filter frequency response from ZPK coefficients.
gammatone -- FIR and IIR gammatone filter design.
group_delay -- Digital filter group delay.
iirdesign -- IIR filter design given bands and gains.
iirfilter -- IIR filter design given order and critical frequencies.
kaiser_atten -- Compute the attenuation of a Kaiser FIR filter, given
-- the number of taps and the transition width at
-- discontinuities in the frequency response.
kaiser_beta -- Compute the Kaiser parameter beta, given the desired
-- FIR filter attenuation.
kaiserord -- Design a Kaiser window to limit ripple and width of
-- transition region.
minimum_phase -- Convert a linear phase FIR filter to minimum phase.
savgol_coeffs -- Compute the FIR filter coefficients for a Savitzky-Golay
-- filter.
remez -- Optimal FIR filter design.
unique_roots -- Unique roots and their multiplicities.
residue -- Partial fraction expansion of b(s) / a(s).
residuez -- Partial fraction expansion of b(z) / a(z).
invres -- Inverse partial fraction expansion for analog filter.
invresz -- Inverse partial fraction expansion for digital filter.
BadCoefficients -- Warning on badly conditioned filter coefficients.
Lower-level filter design functions:
.. autosummary::
:toctree: generated/
abcd_normalize -- Check state-space matrices and ensure they are rank-2.
band_stop_obj -- Band Stop Objective Function for order minimization.
besselap -- Return (z,p,k) for analog prototype of Bessel filter.
buttap -- Return (z,p,k) for analog prototype of Butterworth filter.
cheb1ap -- Return (z,p,k) for type I Chebyshev filter.
cheb2ap -- Return (z,p,k) for type II Chebyshev filter.
ellipap -- Return (z,p,k) for analog prototype of elliptic filter.
lp2bp -- Transform a lowpass filter prototype to a bandpass filter.
lp2bp_zpk -- Transform a lowpass filter prototype to a bandpass filter.
lp2bs -- Transform a lowpass filter prototype to a bandstop filter.
lp2bs_zpk -- Transform a lowpass filter prototype to a bandstop filter.
lp2hp -- Transform a lowpass filter prototype to a highpass filter.
lp2hp_zpk -- Transform a lowpass filter prototype to a highpass filter.
lp2lp -- Transform a lowpass filter prototype to a lowpass filter.
lp2lp_zpk -- Transform a lowpass filter prototype to a lowpass filter.
normalize -- Normalize polynomial representation of a transfer function.
Matlab-style IIR filter design
==============================
.. autosummary::
:toctree: generated/
butter -- Butterworth
buttord
cheby1 -- Chebyshev Type I
cheb1ord
cheby2 -- Chebyshev Type II
cheb2ord
ellip -- Elliptic (Cauer)
ellipord
bessel -- Bessel (no order selection available -- try butterod)
iirnotch -- Design second-order IIR notch digital filter.
iirpeak -- Design second-order IIR peak (resonant) digital filter.
iircomb -- Design IIR comb filter.
Continuous-time linear systems
==============================
.. autosummary::
:toctree: generated/
lti -- Continuous-time linear time invariant system base class.
StateSpace -- Linear time invariant system in state space form.
TransferFunction -- Linear time invariant system in transfer function form.
ZerosPolesGain -- Linear time invariant system in zeros, poles, gain form.
lsim -- Continuous-time simulation of output to linear system.
impulse -- Impulse response of linear, time-invariant (LTI) system.
step -- Step response of continuous-time LTI system.
freqresp -- Frequency response of a continuous-time LTI system.
bode -- Bode magnitude and phase data (continuous-time LTI).
Discrete-time linear systems
============================
.. autosummary::
:toctree: generated/
dlti -- Discrete-time linear time invariant system base class.
StateSpace -- Linear time invariant system in state space form.
TransferFunction -- Linear time invariant system in transfer function form.
ZerosPolesGain -- Linear time invariant system in zeros, poles, gain form.
dlsim -- Simulation of output to a discrete-time linear system.
dimpulse -- Impulse response of a discrete-time LTI system.
dstep -- Step response of a discrete-time LTI system.
dfreqresp -- Frequency response of a discrete-time LTI system.
dbode -- Bode magnitude and phase data (discrete-time LTI).
LTI representations
===================
.. autosummary::
:toctree: generated/
tf2zpk -- Transfer function to zero-pole-gain.
tf2sos -- Transfer function to second-order sections.
tf2ss -- Transfer function to state-space.
zpk2tf -- Zero-pole-gain to transfer function.
zpk2sos -- Zero-pole-gain to second-order sections.
zpk2ss -- Zero-pole-gain to state-space.
ss2tf -- State-pace to transfer function.
ss2zpk -- State-space to pole-zero-gain.
sos2zpk -- Second-order sections to zero-pole-gain.
sos2tf -- Second-order sections to transfer function.
cont2discrete -- Continuous-time to discrete-time LTI conversion.
place_poles -- Pole placement.
Waveforms
=========
.. autosummary::
:toctree: generated/
chirp -- Frequency swept cosine signal, with several freq functions.
gausspulse -- Gaussian modulated sinusoid.
max_len_seq -- Maximum length sequence.
sawtooth -- Periodic sawtooth.
square -- Square wave.
sweep_poly -- Frequency swept cosine signal; freq is arbitrary polynomial.
unit_impulse -- Discrete unit impulse.
Window functions
================
For window functions, see the `scipy.signal.windows` namespace.
In the `scipy.signal` namespace, there is a convenience function to
obtain these windows by name:
.. autosummary::
:toctree: generated/
get_window -- Return a window of a given length and type.
Peak finding
============
.. autosummary::
:toctree: generated/
argrelmin -- Calculate the relative minima of data.
argrelmax -- Calculate the relative maxima of data.
argrelextrema -- Calculate the relative extrema of data.
find_peaks -- Find a subset of peaks inside a signal.
find_peaks_cwt -- Find peaks in a 1-D array with wavelet transformation.
peak_prominences -- Calculate the prominence of each peak in a signal.
peak_widths -- Calculate the width of each peak in a signal.
Spectral analysis
=================
.. autosummary::
:toctree: generated/
periodogram -- Compute a (modified) periodogram.
welch -- Compute a periodogram using Welch's method.
csd -- Compute the cross spectral density, using Welch's method.
coherence -- Compute the magnitude squared coherence, using Welch's method.
spectrogram -- Compute the spectrogram (legacy).
lombscargle -- Computes the Lomb-Scargle periodogram.
vectorstrength -- Computes the vector strength.
ShortTimeFFT -- Interface for calculating the \
:ref:`Short Time Fourier Transform <tutorial_stft>` and \
its inverse.
closest_STFT_dual_window -- Calculate the STFT dual window of a given window \
closest to a desired dual window.
stft -- Compute the Short Time Fourier Transform (legacy).
istft -- Compute the Inverse Short Time Fourier Transform (legacy).
check_COLA -- Check the COLA constraint for iSTFT reconstruction (legacy).
check_NOLA -- Check the NOLA constraint for iSTFT reconstruction.
Chirp Z-transform and Zoom FFT
============================================
.. autosummary::
:toctree: generated/
czt - Chirp z-transform convenience function
zoom_fft - Zoom FFT convenience function
CZT - Chirp z-transform function generator
ZoomFFT - Zoom FFT function generator
czt_points - Output the z-plane points sampled by a chirp z-transform
The functions are simpler to use than the classes, but are less efficient when
using the same transform on many arrays of the same length, since they
repeatedly generate the same chirp signal with every call. In these cases,
use the classes to create a reusable function instead.
"""
# bring in the public functionality from private namespaces
# mypy: ignore-errors
from ._support_alternative_backends import *
from . import _support_alternative_backends
__all__ = _support_alternative_backends.__all__
del _support_alternative_backends, _signal_api, _delegators # noqa: F821
# Deprecated namespaces, to be removed in v2.0.0
from . import (
bsplines, filter_design, fir_filter_design, lti_conversion, ltisys,
spectral, signaltools, waveforms, wavelets, spline
)
from scipy._lib._testutils import PytestTester
test = PytestTester(__name__)
del PytestTester

View file

@ -0,0 +1,264 @@
"""
Functions for acting on a axis of an array.
"""
import numpy as np
def axis_slice(a, start=None, stop=None, step=None, axis=-1):
"""Take a slice along axis 'axis' from 'a'.
Parameters
----------
a : numpy.ndarray
The array to be sliced.
start, stop, step : int or None
The slice parameters.
axis : int, optional
The axis of `a` to be sliced.
Examples
--------
>>> import numpy as np
>>> from scipy.signal._arraytools import axis_slice
>>> a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> axis_slice(a, start=0, stop=1, axis=1)
array([[1],
[4],
[7]])
>>> axis_slice(a, start=1, axis=0)
array([[4, 5, 6],
[7, 8, 9]])
Notes
-----
The keyword arguments start, stop and step are used by calling
slice(start, stop, step). This implies axis_slice() does not
handle its arguments the exactly the same as indexing. To select
a single index k, for example, use
axis_slice(a, start=k, stop=k+1)
In this case, the length of the axis 'axis' in the result will
be 1; the trivial dimension is not removed. (Use numpy.squeeze()
to remove trivial axes.)
"""
a_slice = [slice(None)] * a.ndim
a_slice[axis] = slice(start, stop, step)
b = a[tuple(a_slice)]
return b
def axis_reverse(a, axis=-1):
"""Reverse the 1-D slices of `a` along axis `axis`.
Returns axis_slice(a, step=-1, axis=axis).
"""
return axis_slice(a, step=-1, axis=axis)
def odd_ext(x, n, axis=-1):
"""
Odd extension at the boundaries of an array
Generate a new ndarray by making an odd extension of `x` along an axis.
Parameters
----------
x : ndarray
The array to be extended.
n : int
The number of elements by which to extend `x` at each end of the axis.
axis : int, optional
The axis along which to extend `x`. Default is -1.
Examples
--------
>>> import numpy as np
>>> from scipy.signal._arraytools import odd_ext
>>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]])
>>> odd_ext(a, 2)
array([[-1, 0, 1, 2, 3, 4, 5, 6, 7],
[-4, -1, 0, 1, 4, 9, 16, 23, 28]])
Odd extension is a "180 degree rotation" at the endpoints of the original
array:
>>> t = np.linspace(0, 1.5, 100)
>>> a = 0.9 * np.sin(2 * np.pi * t**2)
>>> b = odd_ext(a, 40)
>>> import matplotlib.pyplot as plt
>>> plt.plot(np.arange(-40, 140), b, 'b', lw=1, label='odd extension')
>>> plt.plot(np.arange(100), a, 'r', lw=2, label='original')
>>> plt.legend(loc='best')
>>> plt.show()
"""
if n < 1:
return x
if n > x.shape[axis] - 1:
raise ValueError(("The extension length n (%d) is too big. " +
"It must not exceed x.shape[axis]-1, which is %d.")
% (n, x.shape[axis] - 1))
left_end = axis_slice(x, start=0, stop=1, axis=axis)
left_ext = axis_slice(x, start=n, stop=0, step=-1, axis=axis)
right_end = axis_slice(x, start=-1, axis=axis)
right_ext = axis_slice(x, start=-2, stop=-(n + 2), step=-1, axis=axis)
ext = np.concatenate((2 * left_end - left_ext,
x,
2 * right_end - right_ext),
axis=axis)
return ext
def even_ext(x, n, axis=-1):
"""
Even extension at the boundaries of an array
Generate a new ndarray by making an even extension of `x` along an axis.
Parameters
----------
x : ndarray
The array to be extended.
n : int
The number of elements by which to extend `x` at each end of the axis.
axis : int, optional
The axis along which to extend `x`. Default is -1.
Examples
--------
>>> import numpy as np
>>> from scipy.signal._arraytools import even_ext
>>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]])
>>> even_ext(a, 2)
array([[ 3, 2, 1, 2, 3, 4, 5, 4, 3],
[ 4, 1, 0, 1, 4, 9, 16, 9, 4]])
Even extension is a "mirror image" at the boundaries of the original array:
>>> t = np.linspace(0, 1.5, 100)
>>> a = 0.9 * np.sin(2 * np.pi * t**2)
>>> b = even_ext(a, 40)
>>> import matplotlib.pyplot as plt
>>> plt.plot(np.arange(-40, 140), b, 'b', lw=1, label='even extension')
>>> plt.plot(np.arange(100), a, 'r', lw=2, label='original')
>>> plt.legend(loc='best')
>>> plt.show()
"""
if n < 1:
return x
if n > x.shape[axis] - 1:
raise ValueError(("The extension length n (%d) is too big. " +
"It must not exceed x.shape[axis]-1, which is %d.")
% (n, x.shape[axis] - 1))
left_ext = axis_slice(x, start=n, stop=0, step=-1, axis=axis)
right_ext = axis_slice(x, start=-2, stop=-(n + 2), step=-1, axis=axis)
ext = np.concatenate((left_ext,
x,
right_ext),
axis=axis)
return ext
def const_ext(x, n, axis=-1):
"""
Constant extension at the boundaries of an array
Generate a new ndarray that is a constant extension of `x` along an axis.
The extension repeats the values at the first and last element of
the axis.
Parameters
----------
x : ndarray
The array to be extended.
n : int
The number of elements by which to extend `x` at each end of the axis.
axis : int, optional
The axis along which to extend `x`. Default is -1.
Examples
--------
>>> import numpy as np
>>> from scipy.signal._arraytools import const_ext
>>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]])
>>> const_ext(a, 2)
array([[ 1, 1, 1, 2, 3, 4, 5, 5, 5],
[ 0, 0, 0, 1, 4, 9, 16, 16, 16]])
Constant extension continues with the same values as the endpoints of the
array:
>>> t = np.linspace(0, 1.5, 100)
>>> a = 0.9 * np.sin(2 * np.pi * t**2)
>>> b = const_ext(a, 40)
>>> import matplotlib.pyplot as plt
>>> plt.plot(np.arange(-40, 140), b, 'b', lw=1, label='constant extension')
>>> plt.plot(np.arange(100), a, 'r', lw=2, label='original')
>>> plt.legend(loc='best')
>>> plt.show()
"""
if n < 1:
return x
left_end = axis_slice(x, start=0, stop=1, axis=axis)
ones_shape = [1] * x.ndim
ones_shape[axis] = n
ones = np.ones(ones_shape, dtype=x.dtype)
left_ext = ones * left_end
right_end = axis_slice(x, start=-1, axis=axis)
right_ext = ones * right_end
ext = np.concatenate((left_ext,
x,
right_ext),
axis=axis)
return ext
def zero_ext(x, n, axis=-1):
"""
Zero padding at the boundaries of an array
Generate a new ndarray that is a zero-padded extension of `x` along
an axis.
Parameters
----------
x : ndarray
The array to be extended.
n : int
The number of elements by which to extend `x` at each end of the
axis.
axis : int, optional
The axis along which to extend `x`. Default is -1.
Examples
--------
>>> import numpy as np
>>> from scipy.signal._arraytools import zero_ext
>>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]])
>>> zero_ext(a, 2)
array([[ 0, 0, 1, 2, 3, 4, 5, 0, 0],
[ 0, 0, 0, 1, 4, 9, 16, 0, 0]])
"""
if n < 1:
return x
zeros_shape = list(x.shape)
zeros_shape[axis] = n
zeros = np.zeros(zeros_shape, dtype=x.dtype)
ext = np.concatenate((zeros, x, zeros), axis=axis)
return ext
def _validate_fs(fs, allow_none=True):
"""
Check if the given sampling frequency is a scalar and raises an exception
otherwise. If allow_none is False, also raises an exception for none
sampling rates. Returns the sampling frequency as float or none if the
input is none.
"""
if fs is None:
if not allow_none:
raise ValueError("Sampling frequency can not be none.")
else: # should be float
if not np.isscalar(fs):
raise ValueError("Sampling frequency fs must be a single scalar.")
fs = float(fs)
return fs

View file

@ -0,0 +1,575 @@
# This program is public domain
# Authors: Paul Kienzle, Nadav Horesh
"""
Chirp z-transform.
We provide two interfaces to the chirp z-transform: an object interface
which precalculates part of the transform and can be applied efficiently
to many different data sets, and a functional interface which is applied
only to the given data set.
Transforms
----------
CZT : callable (x, axis=-1) -> array
Define a chirp z-transform that can be applied to different signals.
ZoomFFT : callable (x, axis=-1) -> array
Define a Fourier transform on a range of frequencies.
Functions
---------
czt : array
Compute the chirp z-transform for a signal.
zoom_fft : array
Compute the Fourier transform on a range of frequencies.
"""
import cmath
import numbers
import numpy as np
from numpy import pi, arange
from scipy.fft import fft, ifft, next_fast_len
__all__ = ['czt', 'zoom_fft', 'CZT', 'ZoomFFT', 'czt_points']
def _validate_sizes(n, m):
if n < 1 or not isinstance(n, numbers.Integral):
raise ValueError('Invalid number of CZT data '
f'points ({n}) specified. '
'n must be positive and integer type.')
if m is None:
m = n
elif m < 1 or not isinstance(m, numbers.Integral):
raise ValueError('Invalid number of CZT output '
f'points ({m}) specified. '
'm must be positive and integer type.')
return m
def czt_points(m, w=None, a=1+0j):
"""
Return the points at which the chirp z-transform is computed.
Parameters
----------
m : int
The number of points desired.
w : complex, optional
The ratio between points in each step.
Defaults to equally spaced points around the entire unit circle.
a : complex, optional
The starting point in the complex plane. Default is 1+0j.
Returns
-------
out : ndarray
The points in the Z plane at which `CZT` samples the z-transform,
when called with arguments `m`, `w`, and `a`, as complex numbers.
See Also
--------
CZT : Class that creates a callable chirp z-transform function.
czt : Convenience function for quickly calculating CZT.
Examples
--------
Plot the points of a 16-point FFT:
>>> import numpy as np
>>> from scipy.signal import czt_points
>>> points = czt_points(16)
>>> import matplotlib.pyplot as plt
>>> plt.plot(points.real, points.imag, 'o')
>>> plt.gca().add_patch(plt.Circle((0,0), radius=1, fill=False, alpha=.3))
>>> plt.axis('equal')
>>> plt.show()
and a 91-point logarithmic spiral that crosses the unit circle:
>>> m, w, a = 91, 0.995*np.exp(-1j*np.pi*.05), 0.8*np.exp(1j*np.pi/6)
>>> points = czt_points(m, w, a)
>>> plt.plot(points.real, points.imag, 'o')
>>> plt.gca().add_patch(plt.Circle((0,0), radius=1, fill=False, alpha=.3))
>>> plt.axis('equal')
>>> plt.show()
"""
m = _validate_sizes(1, m)
k = arange(m)
a = 1.0 * a # at least float
if w is None:
# Nothing specified, default to FFT
return a * np.exp(2j * pi * k / m)
else:
# w specified
w = 1.0 * w # at least float
return a * w**-k
class CZT:
"""
Create a callable chirp z-transform function.
Transform to compute the frequency response around a spiral.
Objects of this class are callables which can compute the
chirp z-transform on their inputs. This object precalculates the constant
chirps used in the given transform.
Parameters
----------
n : int
The size of the signal.
m : int, optional
The number of output points desired. Default is `n`.
w : complex, optional
The ratio between points in each step. This must be precise or the
accumulated error will degrade the tail of the output sequence.
Defaults to equally spaced points around the entire unit circle.
a : complex, optional
The starting point in the complex plane. Default is 1+0j.
Returns
-------
f : CZT
Callable object ``f(x, axis=-1)`` for computing the chirp z-transform
on `x`.
See Also
--------
czt : Convenience function for quickly calculating CZT.
ZoomFFT : Class that creates a callable partial FFT function.
Notes
-----
The defaults are chosen such that ``f(x)`` is equivalent to
``fft.fft(x)`` and, if ``m > len(x)``, that ``f(x, m)`` is equivalent to
``fft.fft(x, m)``.
If `w` does not lie on the unit circle, then the transform will be
around a spiral with exponentially-increasing radius. Regardless,
angle will increase linearly.
For transforms that do lie on the unit circle, accuracy is better when
using `ZoomFFT`, since any numerical error in `w` is
accumulated for long data lengths, drifting away from the unit circle.
The chirp z-transform can be faster than an equivalent FFT with
zero padding. Try it with your own array sizes to see.
However, the chirp z-transform is considerably less precise than the
equivalent zero-padded FFT.
As this CZT is implemented using the Bluestein algorithm, it can compute
large prime-length Fourier transforms in O(N log N) time, rather than the
O(N**2) time required by the direct DFT calculation. (`scipy.fft` also
uses Bluestein's algorithm'.)
(The name "chirp z-transform" comes from the use of a chirp in the
Bluestein algorithm. It does not decompose signals into chirps, like
other transforms with "chirp" in the name.)
References
----------
.. [1] Leo I. Bluestein, "A linear filtering approach to the computation
of the discrete Fourier transform," Northeast Electronics Research
and Engineering Meeting Record 10, 218-219 (1968).
.. [2] Rabiner, Schafer, and Rader, "The chirp z-transform algorithm and
its application," Bell Syst. Tech. J. 48, 1249-1292 (1969).
Examples
--------
Compute multiple prime-length FFTs:
>>> from scipy.signal import CZT
>>> import numpy as np
>>> a = np.random.rand(7)
>>> b = np.random.rand(7)
>>> c = np.random.rand(7)
>>> czt_7 = CZT(n=7)
>>> A = czt_7(a)
>>> B = czt_7(b)
>>> C = czt_7(c)
Display the points at which the FFT is calculated:
>>> czt_7.points()
array([ 1.00000000+0.j , 0.62348980+0.78183148j,
-0.22252093+0.97492791j, -0.90096887+0.43388374j,
-0.90096887-0.43388374j, -0.22252093-0.97492791j,
0.62348980-0.78183148j])
>>> import matplotlib.pyplot as plt
>>> plt.plot(czt_7.points().real, czt_7.points().imag, 'o')
>>> plt.gca().add_patch(plt.Circle((0,0), radius=1, fill=False, alpha=.3))
>>> plt.axis('equal')
>>> plt.show()
"""
def __init__(self, n, m=None, w=None, a=1+0j):
m = _validate_sizes(n, m)
k = arange(max(m, n), dtype=np.min_scalar_type(-max(m, n)**2))
if w is None:
# Nothing specified, default to FFT-like
w = cmath.exp(-2j*pi/m)
wk2 = np.exp(-(1j * pi * ((k**2) % (2*m))) / m)
else:
# w specified
wk2 = w**(k**2/2.)
a = 1.0 * a # at least float
self.w, self.a = w, a
self.m, self.n = m, n
nfft = next_fast_len(n + m - 1)
self._Awk2 = a**-k[:n] * wk2[:n]
self._nfft = nfft
self._Fwk2 = fft(1/np.hstack((wk2[n-1:0:-1], wk2[:m])), nfft)
self._wk2 = wk2[:m]
self._yidx = slice(n-1, n+m-1)
def __call__(self, x, *, axis=-1):
"""
Calculate the chirp z-transform of a signal.
Parameters
----------
x : array
The signal to transform.
axis : int, optional
Axis over which to compute the FFT. If not given, the last axis is
used.
Returns
-------
out : ndarray
An array of the same dimensions as `x`, but with the length of the
transformed axis set to `m`.
"""
x = np.asarray(x)
if x.shape[axis] != self.n:
raise ValueError(f"CZT defined for length {self.n}, not "
f"{x.shape[axis]}")
# Calculate transpose coordinates, to allow operation on any given axis
trnsp = np.arange(x.ndim)
trnsp[[axis, -1]] = [-1, axis]
x = x.transpose(*trnsp)
y = ifft(self._Fwk2 * fft(x*self._Awk2, self._nfft))
y = y[..., self._yidx] * self._wk2
return y.transpose(*trnsp)
def points(self):
"""
Return the points at which the chirp z-transform is computed.
"""
return czt_points(self.m, self.w, self.a)
class ZoomFFT(CZT):
"""
Create a callable zoom FFT transform function.
This is a specialization of the chirp z-transform (`CZT`) for a set of
equally-spaced frequencies around the unit circle, used to calculate a
section of the FFT more efficiently than calculating the entire FFT and
truncating.
Parameters
----------
n : int
The size of the signal.
fn : array_like
A length-2 sequence [`f1`, `f2`] giving the frequency range, or a
scalar, for which the range [0, `fn`] is assumed.
m : int, optional
The number of points to evaluate. Default is `n`.
fs : float, optional
The sampling frequency. If ``fs=10`` represented 10 kHz, for example,
then `f1` and `f2` would also be given in kHz.
The default sampling frequency is 2, so `f1` and `f2` should be
in the range [0, 1] to keep the transform below the Nyquist
frequency.
endpoint : bool, optional
If True, `f2` is the last sample. Otherwise, it is not included.
Default is False.
Returns
-------
f : ZoomFFT
Callable object ``f(x, axis=-1)`` for computing the zoom FFT on `x`.
See Also
--------
zoom_fft : Convenience function for calculating a zoom FFT.
Notes
-----
The defaults are chosen such that ``f(x, 2)`` is equivalent to
``fft.fft(x)`` and, if ``m > len(x)``, that ``f(x, 2, m)`` is equivalent to
``fft.fft(x, m)``.
Sampling frequency is 1/dt, the time step between samples in the
signal `x`. The unit circle corresponds to frequencies from 0 up
to the sampling frequency. The default sampling frequency of 2
means that `f1`, `f2` values up to the Nyquist frequency are in the
range [0, 1). For `f1`, `f2` values expressed in radians, a sampling
frequency of 2*pi should be used.
Remember that a zoom FFT can only interpolate the points of the existing
FFT. It cannot help to resolve two separate nearby frequencies.
Frequency resolution can only be increased by increasing acquisition
time.
These functions are implemented using Bluestein's algorithm (as is
`scipy.fft`). [2]_
References
----------
.. [1] Steve Alan Shilling, "A study of the chirp z-transform and its
applications", pg 29 (1970)
https://krex.k-state.edu/dspace/bitstream/handle/2097/7844/LD2668R41972S43.pdf
.. [2] Leo I. Bluestein, "A linear filtering approach to the computation
of the discrete Fourier transform," Northeast Electronics Research
and Engineering Meeting Record 10, 218-219 (1968).
Examples
--------
To plot the transform results use something like the following:
>>> import numpy as np
>>> from scipy.signal import ZoomFFT
>>> t = np.linspace(0, 1, 1021)
>>> x = np.cos(2*np.pi*15*t) + np.sin(2*np.pi*17*t)
>>> f1, f2 = 5, 27
>>> transform = ZoomFFT(len(x), [f1, f2], len(x), fs=1021)
>>> X = transform(x)
>>> f = np.linspace(f1, f2, len(x))
>>> import matplotlib.pyplot as plt
>>> plt.plot(f, 20*np.log10(np.abs(X)))
>>> plt.show()
"""
def __init__(self, n, fn, m=None, *, fs=2, endpoint=False):
m = _validate_sizes(n, m)
k = arange(max(m, n), dtype=np.min_scalar_type(-max(m, n)**2))
if np.size(fn) == 2:
f1, f2 = fn
elif np.size(fn) == 1:
f1, f2 = 0.0, fn
else:
raise ValueError('fn must be a scalar or 2-length sequence')
self.f1, self.f2, self.fs = f1, f2, fs
if endpoint:
scale = ((f2 - f1) * m) / (fs * (m - 1))
else:
scale = (f2 - f1) / fs
a = cmath.exp(2j * pi * f1/fs)
wk2 = np.exp(-(1j * pi * scale * k**2) / m)
self.w = cmath.exp(-2j*pi/m * scale)
self.a = a
self.m, self.n = m, n
ak = np.exp(-2j * pi * f1/fs * k[:n])
self._Awk2 = ak * wk2[:n]
nfft = next_fast_len(n + m - 1)
self._nfft = nfft
self._Fwk2 = fft(1/np.hstack((wk2[n-1:0:-1], wk2[:m])), nfft)
self._wk2 = wk2[:m]
self._yidx = slice(n-1, n+m-1)
def czt(x, m=None, w=None, a=1+0j, *, axis=-1):
"""
Compute the frequency response around a spiral in the Z plane.
Parameters
----------
x : array
The signal to transform.
m : int, optional
The number of output points desired. Default is the length of the
input data.
w : complex, optional
The ratio between points in each step. This must be precise or the
accumulated error will degrade the tail of the output sequence.
Defaults to equally spaced points around the entire unit circle.
a : complex, optional
The starting point in the complex plane. Default is 1+0j.
axis : int, optional
Axis over which to compute the FFT. If not given, the last axis is
used.
Returns
-------
out : ndarray
An array of the same dimensions as `x`, but with the length of the
transformed axis set to `m`.
See Also
--------
CZT : Class that creates a callable chirp z-transform function.
zoom_fft : Convenience function for partial FFT calculations.
Notes
-----
The defaults are chosen such that ``signal.czt(x)`` is equivalent to
``fft.fft(x)`` and, if ``m > len(x)``, that ``signal.czt(x, m)`` is
equivalent to ``fft.fft(x, m)``.
If the transform needs to be repeated, use `CZT` to construct a
specialized transform function which can be reused without
recomputing constants.
An example application is in system identification, repeatedly evaluating
small slices of the z-transform of a system, around where a pole is
expected to exist, to refine the estimate of the pole's true location. [1]_
References
----------
.. [1] Steve Alan Shilling, "A study of the chirp z-transform and its
applications", pg 20 (1970)
https://krex.k-state.edu/dspace/bitstream/handle/2097/7844/LD2668R41972S43.pdf
Examples
--------
Generate a sinusoid:
>>> import numpy as np
>>> f1, f2, fs = 8, 10, 200 # Hz
>>> t = np.linspace(0, 1, fs, endpoint=False)
>>> x = np.sin(2*np.pi*t*f2)
>>> import matplotlib.pyplot as plt
>>> plt.plot(t, x)
>>> plt.axis([0, 1, -1.1, 1.1])
>>> plt.show()
Its discrete Fourier transform has all of its energy in a single frequency
bin:
>>> from scipy.fft import rfft, rfftfreq
>>> from scipy.signal import czt, czt_points
>>> plt.plot(rfftfreq(fs, 1/fs), abs(rfft(x)))
>>> plt.margins(0, 0.1)
>>> plt.show()
However, if the sinusoid is logarithmically-decaying:
>>> x = np.exp(-t*f1) * np.sin(2*np.pi*t*f2)
>>> plt.plot(t, x)
>>> plt.axis([0, 1, -1.1, 1.1])
>>> plt.show()
the DFT will have spectral leakage:
>>> plt.plot(rfftfreq(fs, 1/fs), abs(rfft(x)))
>>> plt.margins(0, 0.1)
>>> plt.show()
While the DFT always samples the z-transform around the unit circle, the
chirp z-transform allows us to sample the Z-transform along any
logarithmic spiral, such as a circle with radius smaller than unity:
>>> M = fs // 2 # Just positive frequencies, like rfft
>>> a = np.exp(-f1/fs) # Starting point of the circle, radius < 1
>>> w = np.exp(-1j*np.pi/M) # "Step size" of circle
>>> points = czt_points(M + 1, w, a) # M + 1 to include Nyquist
>>> plt.plot(points.real, points.imag, '.')
>>> plt.gca().add_patch(plt.Circle((0,0), radius=1, fill=False, alpha=.3))
>>> plt.axis('equal'); plt.axis([-1.05, 1.05, -0.05, 1.05])
>>> plt.show()
With the correct radius, this transforms the decaying sinusoid (and others
with the same decay rate) without spectral leakage:
>>> z_vals = czt(x, M + 1, w, a) # Include Nyquist for comparison to rfft
>>> freqs = np.angle(points)*fs/(2*np.pi) # angle = omega, radius = sigma
>>> plt.plot(freqs, abs(z_vals))
>>> plt.margins(0, 0.1)
>>> plt.show()
"""
x = np.asarray(x)
transform = CZT(x.shape[axis], m=m, w=w, a=a)
return transform(x, axis=axis)
def zoom_fft(x, fn, m=None, *, fs=2, endpoint=False, axis=-1):
"""
Compute the DFT of `x` only for frequencies in range `fn`.
Parameters
----------
x : array
The signal to transform.
fn : array_like
A length-2 sequence [`f1`, `f2`] giving the frequency range, or a
scalar, for which the range [0, `fn`] is assumed.
m : int, optional
The number of points to evaluate. The default is the length of `x`.
fs : float, optional
The sampling frequency. If ``fs=10`` represented 10 kHz, for example,
then `f1` and `f2` would also be given in kHz.
The default sampling frequency is 2, so `f1` and `f2` should be
in the range [0, 1] to keep the transform below the Nyquist
frequency.
endpoint : bool, optional
If True, `f2` is the last sample. Otherwise, it is not included.
Default is False.
axis : int, optional
Axis over which to compute the FFT. If not given, the last axis is
used.
Returns
-------
out : ndarray
The transformed signal. The Fourier transform will be calculated
at the points f1, f1+df, f1+2df, ..., f2, where df=(f2-f1)/m.
See Also
--------
ZoomFFT : Class that creates a callable partial FFT function.
Notes
-----
The defaults are chosen such that ``signal.zoom_fft(x, 2)`` is equivalent
to ``fft.fft(x)`` and, if ``m > len(x)``, that ``signal.zoom_fft(x, 2, m)``
is equivalent to ``fft.fft(x, m)``.
To graph the magnitude of the resulting transform, use::
plot(linspace(f1, f2, m, endpoint=False), abs(zoom_fft(x, [f1, f2], m)))
If the transform needs to be repeated, use `ZoomFFT` to construct
a specialized transform function which can be reused without
recomputing constants.
Examples
--------
To plot the transform results use something like the following:
>>> import numpy as np
>>> from scipy.signal import zoom_fft
>>> t = np.linspace(0, 1, 1021)
>>> x = np.cos(2*np.pi*15*t) + np.sin(2*np.pi*17*t)
>>> f1, f2 = 5, 27
>>> X = zoom_fft(x, [f1, f2], len(x), fs=1021)
>>> f = np.linspace(f1, f2, len(x))
>>> import matplotlib.pyplot as plt
>>> plt.plot(f, 20*np.log10(np.abs(X)))
>>> plt.show()
"""
x = np.asarray(x)
transform = ZoomFFT(x.shape[axis], fn, m=m, fs=fs, endpoint=endpoint)
return transform(x, axis=axis)

View file

@ -0,0 +1,568 @@
"""Delegators for alternative backends in scipy.signal.
The signature of `func_signature` must match the signature of signal.func.
The job of a `func_signature` is to know which arguments of `signal.func`
are arrays.
* signatures are generated by
--------------
import inspect
from scipy import signal
names = [x for x in dir(signal) if not x.startswith('_')]
objs = [getattr(signal, name) for name in names]
funcs = [obj for obj in objs if inspect.isroutine(obj)]
for func in funcs:
try:
sig = inspect.signature(func)
except ValueError:
sig = "( FIXME )"
print(f"def {func.__name__}_signature{sig}:\n\treturn array_namespace(...
)\n\n")
---------------
* which arguments to delegate on: manually trawled the documentation for
array-like and array arguments
"""
import numpy as np
from scipy._lib._array_api import array_namespace, np_compat
def _skip_if_lti(arg):
"""Handle `system` arg overloads.
ATM, only pass tuples through. Consider updating when cupyx.lti class
is supported.
"""
if isinstance(arg, tuple):
return arg
else:
return (None,)
def _skip_if_str_or_tuple(window):
"""Handle `window` being a str or a tuple or an array-like.
"""
if isinstance(window, str) or isinstance(window, tuple) or callable(window):
return None
else:
return window
def _skip_if_poly1d(arg):
return None if isinstance(arg, np.poly1d) else arg
###################
def abcd_normalize_signature(A=None, B=None, C=None, D=None):
return array_namespace(A, B, C, D)
def argrelextrema_signature(data, *args, **kwds):
return array_namespace(data)
argrelmax_signature = argrelextrema_signature
argrelmin_signature = argrelextrema_signature
def band_stop_obj_signature(wp, ind, passb, stopb, gpass, gstop, type):
return array_namespace(passb, stopb)
def bessel_signature(N, Wn, *args, **kwds):
return array_namespace(Wn)
butter_signature = bessel_signature
def cheby2_signature(N, rs, Wn, *args, **kwds):
return array_namespace(Wn)
def cheby1_signature(N, rp, Wn, *args, **kwds):
return array_namespace(Wn)
def ellip_signature(N, rp, rs, Wn, *args, **kwds):
return array_namespace(Wn)
########################## XXX: no arrays in, arrays out
def besselap_signature(N, norm='phase'):
return np
def buttap_signature(N):
return np
def cheb1ap_signature(N, rp):
return np
def cheb2ap_signature(N, rs):
return np
def ellipap_signature(N, rp, rs):
return np
def correlation_lags_signature(in1_len, in2_len, mode='full'):
return np
def czt_points_signature(m, w=None, a=(1+0j)):
return np
def gammatone_signature(freq, ftype, order=None, numtaps=None, fs=None):
return np
def iircomb_signature(w0, Q, ftype='notch', fs=2.0, *, pass_zero=False):
return np
def iirnotch_signature(w0, Q, fs=2.0):
return np
def iirpeak_signature(w0, Q, fs=2.0):
return np
def savgol_coeffs_signature(
window_length, polyorder, deriv=0, delta=1.0, pos=None, use='conv'
):
return np
def unit_impulse_signature(shape, idx=None, dtype=float):
return np
############################
####################### XXX: no arrays, maybe arrays out
def buttord_signature(wp, ws, gpass, gstop, analog=False, fs=None):
return np
def cheb1ord_signature(wp, ws, gpass, gstop, analog=False, fs=None):
return np
def cheb2ord_signature(wp, ws, gpass, gstop, analog=False, fs=None):
return np
def ellipord_signature(wp, ws, gpass, gstop, analog=False, fs=None):
return np
###########################################
########### NB: scalars in, scalars out
def kaiser_atten_signature(numtaps, width):
return np
def kaiser_beta_signature(a):
return np
def kaiserord_signature(ripple, width):
return np
def get_window_signature(window, Nx, fftbins=True, *, xp=None, device=None):
return np if xp is None else xp
#################################
def bode_signature(system, w=None, n=100):
return array_namespace(*_skip_if_lti(system), w)
dbode_signature = bode_signature
def freqresp_signature(system, w=None, n=10000):
return array_namespace(*_skip_if_lti(system), w)
dfreqresp_signature = freqresp_signature
def impulse_signature(system, X0=None, T=None, N=None):
return array_namespace(*_skip_if_lti(system), X0, T)
def dimpulse_signature(system, x0=None, t=None, n=None):
return array_namespace(*_skip_if_lti(system), x0, t)
def lsim_signature(system, U, T, X0=None, interp=True):
return array_namespace(*_skip_if_lti(system), U, T, X0)
def dlsim_signature(system, u, t=None, x0=None):
return array_namespace(*_skip_if_lti(system), u, t, x0)
def step_signature(system, X0=None, T=None, N=None):
return array_namespace(*_skip_if_lti(system), X0, T)
def dstep_signature(system, x0=None, t=None, n=None):
return array_namespace(*_skip_if_lti(system), x0, t)
def cont2discrete_signature(system, dt, method='zoh', alpha=None):
return array_namespace(*_skip_if_lti(system))
def bilinear_signature(b, a, fs=1.0):
return array_namespace(b, a)
def bilinear_zpk_signature(z, p, k, fs):
return array_namespace(z, p)
def chirp_signature(t,*args, **kwds):
return array_namespace(t)
############## XXX: array-likes in, str out
def choose_conv_method_signature(in1, in2, *args, **kwds):
return array_namespace(in1, in2)
############################################
def convolve_signature(in1, in2, *args, **kwds):
return array_namespace(in1, in2)
fftconvolve_signature = convolve_signature
oaconvolve_signature = convolve_signature
correlate_signature = convolve_signature
correlate_signature = convolve_signature
convolve2d_signature = convolve_signature
correlate2d_signature = convolve_signature
def coherence_signature(x, y, fs=1.0, window='hann', *args, **kwds):
return array_namespace(x, y, _skip_if_str_or_tuple(window))
def csd_signature(x, y, fs=1.0, window='hann', *args, **kwds):
return array_namespace(x, y, _skip_if_str_or_tuple(window))
def periodogram_signature(x, fs=1.0, window='boxcar'):
return array_namespace(x, _skip_if_str_or_tuple(window))
def welch_signature(x, fs=1.0, window='hann', *args, **kwds):
return array_namespace(x, _skip_if_str_or_tuple(window))
def spectrogram_signature(x, fs=1.0, window=('tukey', 0.25), *args, **kwds):
return array_namespace(x, _skip_if_str_or_tuple(window))
def stft_signature(x, fs=1.0, window='hann', *args, **kwds):
return array_namespace(x, _skip_if_str_or_tuple(window))
def istft_signature(Zxx, fs=1.0, window='hann', *args, **kwds):
return array_namespace(Zxx, _skip_if_str_or_tuple(window))
def resample_signature(x, num, t=None, axis=0, window=None, domain='time'):
return array_namespace(x, t, _skip_if_str_or_tuple(window))
def resample_poly_signature(x, up, down, axis=0, window=('kaiser', 5.0), *args, **kwds):
return array_namespace(x, _skip_if_str_or_tuple(window))
def check_COLA_signature(window, nperseg, noverlap, tol=1e-10):
return array_namespace(_skip_if_str_or_tuple(window))
def check_NOLA_signature(window, nperseg, noverlap, tol=1e-10):
return array_namespace(_skip_if_str_or_tuple(window))
def czt_signature(x, *args, **kwds):
return array_namespace(x)
decimate_signature = czt_signature
gauss_spline_signature = czt_signature
def deconvolve_signature(signal, divisor):
return array_namespace(signal, divisor)
def detrend_signature(data, axis=1, type='linear', bp=0, *args, **kwds):
return array_namespace(data, bp)
def filtfilt_signature(b, a, x, *args, **kwds):
return array_namespace(b, a, x)
def lfilter_signature(b, a, x, axis=-1, zi=None):
return array_namespace(b, a, x, zi)
def envelope_signature(z, *args, **kwds):
return array_namespace(z)
def find_peaks_signature(
x, height=None, threshold=None, distance=None, prominence=None, width=None,
wlen=None, rel_height=0.5, plateau_size=None
):
return array_namespace(x, height, threshold, prominence, width, plateau_size)
def find_peaks_cwt_signature(
vector, widths, wavelet=None, max_distances=None, *args, **kwds
):
return array_namespace(vector, widths, max_distances)
def findfreqs_signature(num, den, N, kind='ba'):
return array_namespace(num, den)
def firls_signature(numtaps, bands, desired, *, weight=None, fs=None):
return array_namespace(bands, desired, weight)
def firwin_signature(numtaps, cutoff, *args, **kwds):
if isinstance(cutoff, int | float):
xp = np_compat
else:
xp = array_namespace(cutoff)
return xp
def firwin2_signature(numtaps, freq, gain, *args, **kwds):
return array_namespace(freq, gain)
def freqs_zpk_signature(z, p, k, worN, *args, **kwds):
return array_namespace(z, p, worN)
freqz_zpk_signature = freqs_zpk_signature
def freqs_signature(b, a, worN=200, *args, **kwds):
return array_namespace(b, a, worN)
freqz_signature = freqs_signature
def freqz_sos_signature(sos, worN=512, *args, **kwds):
return array_namespace(sos, worN)
sosfreqz_signature = freqz_sos_signature
def gausspulse_signature(t, *args, **kwds):
arr_t = None if isinstance(t, str) else t
return array_namespace(arr_t)
def group_delay_signature(system, w=512, whole=False, fs=6.283185307179586):
return array_namespace(_skip_if_str_or_tuple(system), w)
def hilbert_signature(x, N=None, axis=-1):
return array_namespace(x)
hilbert2_signature = hilbert_signature
def iirdesign_signature(wp, ws, *args, **kwds):
return array_namespace(wp, ws)
def iirfilter_signature(N, Wn, *args, **kwds):
return array_namespace(Wn)
def invres_signature(r, p, k, tol=0.001, rtype='avg'):
return array_namespace(r, p, k)
invresz_signature = invres_signature
############################### XXX: excluded, blacklisted on CuPy (mismatched API)
def lfilter_zi_signature(b, a):
return array_namespace(b, a)
def sosfilt_zi_signature(sos):
return array_namespace(sos)
# needs to be blacklisted on CuPy (is not implemented)
def remez_signature(numtaps, bands, desired, *, weight=None, **kwds):
return array_namespace(bands, desired, weight)
#############################################
def lfiltic_signature(b, a, y, x=None):
return array_namespace(b, a, y, x)
def lombscargle_signature(
x, y, freqs, precenter=False, normalize=False, *,
weights=None, floating_mean=False
):
return array_namespace(x, y, freqs, weights)
def lp2bp_signature(b, a, *args, **kwds):
return array_namespace(b, a)
lp2bs_signature = lp2bp_signature
lp2hp_signature = lp2bp_signature
lp2lp_signature = lp2bp_signature
tf2zpk_signature = lp2bp_signature
tf2sos_signature = lp2bp_signature
normalize_signature = lp2bp_signature
residue_signature = lp2bp_signature
residuez_signature = residue_signature
def lp2bp_zpk_signature(z, p, k, *args, **kwds):
return array_namespace(z, p)
lp2bs_zpk_signature = lp2bp_zpk_signature
lp2hp_zpk_signature = lp2bs_zpk_signature
lp2lp_zpk_signature = lp2bs_zpk_signature
def zpk2sos_signature(z, p, k, *args, **kwds):
return array_namespace(z, p)
zpk2ss_signature = zpk2sos_signature
zpk2tf_signature = zpk2sos_signature
def max_len_seq_signature(nbits, state=None, length=None, taps=None):
return array_namespace(state, taps)
def medfilt_signature(volume, kernel_size=None):
return array_namespace(volume)
def medfilt2d_signature(input, kernel_size=3):
return array_namespace(input)
def minimum_phase_signature(h, *args, **kwds):
return array_namespace(h)
def order_filter_signature(a, domain, rank):
return array_namespace(a, domain)
def peak_prominences_signature(x, peaks, *args, **kwds):
return array_namespace(x, peaks)
peak_widths_signature = peak_prominences_signature
def place_poles_signature(A, B, poles, method='YT', rtol=0.001, maxiter=30):
return array_namespace(A, B, poles)
def savgol_filter_signature(x, *args, **kwds):
return array_namespace(x)
def sawtooth_signature(t, width=1):
return array_namespace(t)
def sepfir2d_signature(input, hrow, hcol):
return array_namespace(input, hrow, hcol)
def sos2tf_signature(sos):
return array_namespace(sos)
sos2zpk_signature = sos2tf_signature
def sosfilt_signature(sos, x, axis=-1, zi=None):
return array_namespace(sos, x, zi)
def sosfiltfilt_signature(sos, x, *args, **kwds):
return array_namespace(sos, x)
def spline_filter_signature(Iin, lmbda=5.0):
return array_namespace(Iin)
def square_signature(t, duty=0.5):
return array_namespace(t)
def ss2tf_signature(A, B, C, D, input=0):
return array_namespace(A, B, C, D)
ss2zpk_signature = ss2tf_signature
def sweep_poly_signature(t, poly, phi=0):
return array_namespace(t, _skip_if_poly1d(poly))
def symiirorder1_signature(signal, c0, z1, precision=-1.0):
return array_namespace(signal)
def symiirorder2_signature(input, r, omega, precision=-1.0):
return array_namespace(input, r, omega)
def cspline1d_signature(signal, *args, **kwds):
return array_namespace(signal)
qspline1d_signature = cspline1d_signature
cspline2d_signature = cspline1d_signature
qspline2d_signature = qspline1d_signature
def cspline1d_eval_signature(cj, newx, *args, **kwds):
return array_namespace(cj, newx)
qspline1d_eval_signature = cspline1d_eval_signature
def tf2ss_signature(num, den):
return array_namespace(num, den)
def unique_roots_signature(p, tol=0.001, rtype='min'):
return array_namespace(p)
def upfirdn_signature(h, x, up=1, down=1, axis=-1, mode='constant', cval=0):
return array_namespace(h, x)
def vectorstrength_signature(events, period):
return array_namespace(events, period)
def wiener_signature(im, mysize=None, noise=None):
return array_namespace(im)
def zoom_fft_signature(x, fn, m=None, *, fs=2, endpoint=False, axis=-1):
return array_namespace(x, fn)

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,534 @@
"""
ltisys -- a collection of functions to convert linear time invariant systems
from one representation to another.
"""
import numpy as np
from numpy import (r_, eye, atleast_2d, poly, dot,
asarray, zeros, array, outer)
from scipy import linalg
from ._filter_design import tf2zpk, zpk2tf, normalize
__all__ = ['tf2ss', 'abcd_normalize', 'ss2tf', 'zpk2ss', 'ss2zpk',
'cont2discrete']
def tf2ss(num, den):
r"""Transfer function to state-space representation.
Parameters
----------
num, den : array_like
Sequences representing the coefficients of the numerator and
denominator polynomials, in order of descending degree. The
denominator needs to be at least as long as the numerator.
Returns
-------
A, B, C, D : ndarray
State space representation of the system, in controller canonical
form.
Examples
--------
Convert the transfer function:
.. math:: H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}
>>> num = [1, 3, 3]
>>> den = [1, 2, 1]
to the state-space representation:
.. math::
\dot{\textbf{x}}(t) =
\begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} \textbf{x}(t) +
\begin{bmatrix} 1 \\ 0 \end{bmatrix} \textbf{u}(t) \\
\textbf{y}(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \textbf{x}(t) +
\begin{bmatrix} 1 \end{bmatrix} \textbf{u}(t)
>>> from scipy.signal import tf2ss
>>> A, B, C, D = tf2ss(num, den)
>>> A
array([[-2., -1.],
[ 1., 0.]])
>>> B
array([[ 1.],
[ 0.]])
>>> C
array([[ 1., 2.]])
>>> D
array([[ 1.]])
"""
# Controller canonical state-space representation.
# if M+1 = len(num) and K+1 = len(den) then we must have M <= K
# states are found by asserting that X(s) = U(s) / D(s)
# then Y(s) = N(s) * X(s)
#
# A, B, C, and D follow quite naturally.
#
num, den = normalize(num, den) # Strips zeros, checks arrays
nn = len(num.shape)
if nn == 1:
num = asarray([num], num.dtype)
M = num.shape[1]
K = len(den)
if M > K:
msg = "Improper transfer function. `num` is longer than `den`."
raise ValueError(msg)
if M == 0 or K == 0: # Null system
return (array([], float), array([], float), array([], float),
array([], float))
# pad numerator to have same number of columns has denominator
num = np.hstack((np.zeros((num.shape[0], K - M), dtype=num.dtype), num))
if num.shape[-1] > 0:
D = atleast_2d(num[:, 0])
else:
# We don't assign it an empty array because this system
# is not 'null'. It just doesn't have a non-zero D
# matrix. Thus, it should have a non-zero shape so that
# it can be operated on by functions like 'ss2tf'
D = array([[0]], float)
if K == 1:
D = D.reshape(num.shape)
return (zeros((1, 1)), zeros((1, D.shape[1])),
zeros((D.shape[0], 1)), D)
frow = -array([den[1:]])
A = r_[frow, eye(K - 2, K - 1)]
B = eye(K - 1, 1)
C = num[:, 1:] - outer(num[:, 0], den[1:])
D = D.reshape((C.shape[0], B.shape[1]))
return A, B, C, D
def _none_to_empty_2d(arg):
if arg is None:
return zeros((0, 0))
else:
return arg
def _atleast_2d_or_none(arg):
if arg is not None:
return atleast_2d(arg)
def _shape_or_none(M):
if M is not None:
return M.shape
else:
return (None,) * 2
def _choice_not_none(*args):
for arg in args:
if arg is not None:
return arg
def _restore(M, shape):
if M.shape == (0, 0):
return zeros(shape)
else:
if M.shape != shape:
raise ValueError("The input arrays have incompatible shapes.")
return M
def abcd_normalize(A=None, B=None, C=None, D=None):
"""Check state-space matrices and ensure they are 2-D.
If enough information on the system is provided, that is, enough
properly-shaped arrays are passed to the function, the missing ones
are built from this information, ensuring the correct number of
rows and columns. Otherwise a ValueError is raised.
Parameters
----------
A, B, C, D : array_like, optional
State-space matrices. All of them are None (missing) by default.
See `ss2tf` for format.
Returns
-------
A, B, C, D : array
Properly shaped state-space matrices.
Raises
------
ValueError
If not enough information on the system was provided.
"""
A, B, C, D = map(_atleast_2d_or_none, (A, B, C, D))
MA, NA = _shape_or_none(A)
MB, NB = _shape_or_none(B)
MC, NC = _shape_or_none(C)
MD, ND = _shape_or_none(D)
p = _choice_not_none(MA, MB, NC)
q = _choice_not_none(NB, ND)
r = _choice_not_none(MC, MD)
if p is None or q is None or r is None:
raise ValueError("Not enough information on the system.")
A, B, C, D = map(_none_to_empty_2d, (A, B, C, D))
A = _restore(A, (p, p))
B = _restore(B, (p, q))
C = _restore(C, (r, p))
D = _restore(D, (r, q))
return A, B, C, D
def ss2tf(A, B, C, D, input=0):
r"""State-space to transfer function.
A, B, C, D defines a linear state-space system with `p` inputs,
`q` outputs, and `n` state variables.
Parameters
----------
A : array_like
State (or system) matrix of shape ``(n, n)``
B : array_like
Input matrix of shape ``(n, p)``
C : array_like
Output matrix of shape ``(q, n)``
D : array_like
Feedthrough (or feedforward) matrix of shape ``(q, p)``
input : int, optional
For multiple-input systems, the index of the input to use.
Returns
-------
num : 2-D ndarray
Numerator(s) of the resulting transfer function(s). `num` has one row
for each of the system's outputs. Each row is a sequence representation
of the numerator polynomial.
den : 1-D ndarray
Denominator of the resulting transfer function(s). `den` is a sequence
representation of the denominator polynomial.
Examples
--------
Convert the state-space representation:
.. math::
\dot{\textbf{x}}(t) =
\begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} \textbf{x}(t) +
\begin{bmatrix} 1 \\ 0 \end{bmatrix} \textbf{u}(t) \\
\textbf{y}(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \textbf{x}(t) +
\begin{bmatrix} 1 \end{bmatrix} \textbf{u}(t)
>>> A = [[-2, -1], [1, 0]]
>>> B = [[1], [0]] # 2-D column vector
>>> C = [[1, 2]] # 2-D row vector
>>> D = 1
to the transfer function:
.. math:: H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}
>>> from scipy.signal import ss2tf
>>> ss2tf(A, B, C, D)
(array([[1., 3., 3.]]), array([ 1., 2., 1.]))
"""
# transfer function is C (sI - A)**(-1) B + D
# Check consistency and make them all rank-2 arrays
A, B, C, D = abcd_normalize(A, B, C, D)
nout, nin = D.shape
if input >= nin:
raise ValueError("System does not have the input specified.")
# make SIMO from possibly MIMO system.
B = B[:, input:input + 1]
D = D[:, input:input + 1]
try:
den = poly(A)
except ValueError:
den = 1
if (B.size == 0) and (C.size == 0):
num = np.ravel(D)
if (D.size == 0) and (A.size == 0):
den = []
return num, den
num_states = A.shape[0]
type_test = A[:, 0] + B[:, 0] + C[0, :] + D + 0.0
num = np.empty((nout, num_states + 1), type_test.dtype)
for k in range(nout):
Ck = atleast_2d(C[k, :])
num[k] = poly(A - dot(B, Ck)) + (D[k] - 1) * den
return num, den
def zpk2ss(z, p, k):
"""Zero-pole-gain representation to state-space representation
Parameters
----------
z, p : sequence
Zeros and poles.
k : float
System gain.
Returns
-------
A, B, C, D : ndarray
State space representation of the system, in controller canonical
form.
"""
return tf2ss(*zpk2tf(z, p, k))
def ss2zpk(A, B, C, D, input=0):
"""State-space representation to zero-pole-gain representation.
A, B, C, D defines a linear state-space system with `p` inputs,
`q` outputs, and `n` state variables.
Parameters
----------
A : array_like
State (or system) matrix of shape ``(n, n)``
B : array_like
Input matrix of shape ``(n, p)``
C : array_like
Output matrix of shape ``(q, n)``
D : array_like
Feedthrough (or feedforward) matrix of shape ``(q, p)``
input : int, optional
For multiple-input systems, the index of the input to use.
Returns
-------
z, p : sequence
Zeros and poles.
k : float
System gain.
"""
return tf2zpk(*ss2tf(A, B, C, D, input=input))
def cont2discrete(system, dt, method="zoh", alpha=None):
"""
Transform a continuous to a discrete state-space system.
Parameters
----------
system : a tuple describing the system or an instance of `lti`
The following gives the number of elements in the tuple and
the interpretation:
* 1: (instance of `lti`)
* 2: (num, den)
* 3: (zeros, poles, gain)
* 4: (A, B, C, D)
dt : float
The discretization time step.
method : str, optional
Which method to use:
* gbt: generalized bilinear transformation
* bilinear: Tustin's approximation ("gbt" with alpha=0.5)
* euler: Euler (or forward differencing) method ("gbt" with alpha=0)
* backward_diff: Backwards differencing ("gbt" with alpha=1.0)
* zoh: zero-order hold (default)
* foh: first-order hold (*versionadded: 1.3.0*)
* impulse: equivalent impulse response (*versionadded: 1.3.0*)
alpha : float within [0, 1], optional
The generalized bilinear transformation weighting parameter, which
should only be specified with method="gbt", and is ignored otherwise
Returns
-------
sysd : tuple containing the discrete system
Based on the input type, the output will be of the form
* (num, den, dt) for transfer function input
* (zeros, poles, gain, dt) for zeros-poles-gain input
* (A, B, C, D, dt) for state-space system input
Notes
-----
By default, the routine uses a Zero-Order Hold (zoh) method to perform
the transformation. Alternatively, a generalized bilinear transformation
may be used, which includes the common Tustin's bilinear approximation,
an Euler's method technique, or a backwards differencing technique.
The Zero-Order Hold (zoh) method is based on [1]_, the generalized bilinear
approximation is based on [2]_ and [3]_, the First-Order Hold (foh) method
is based on [4]_.
References
----------
.. [1] https://en.wikipedia.org/wiki/Discretization#Discretization_of_linear_state_space_models
.. [2] http://techteach.no/publications/discretetime_signals_systems/discrete.pdf
.. [3] G. Zhang, X. Chen, and T. Chen, Digital redesign via the generalized
bilinear transformation, Int. J. Control, vol. 82, no. 4, pp. 741-754,
2009.
(https://www.mypolyuweb.hk/~magzhang/Research/ZCC09_IJC.pdf)
.. [4] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital control
of dynamic systems, 3rd ed. Menlo Park, Calif: Addison-Wesley,
pp. 204-206, 1998.
Examples
--------
We can transform a continuous state-space system to a discrete one:
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.signal import cont2discrete, lti, dlti, dstep
Define a continuous state-space system.
>>> A = np.array([[0, 1],[-10., -3]])
>>> B = np.array([[0],[10.]])
>>> C = np.array([[1., 0]])
>>> D = np.array([[0.]])
>>> l_system = lti(A, B, C, D)
>>> t, x = l_system.step(T=np.linspace(0, 5, 100))
>>> fig, ax = plt.subplots()
>>> ax.plot(t, x, label='Continuous', linewidth=3)
Transform it to a discrete state-space system using several methods.
>>> dt = 0.1
>>> for method in ['zoh', 'bilinear', 'euler', 'backward_diff', 'foh', 'impulse']:
... d_system = cont2discrete((A, B, C, D), dt, method=method)
... s, x_d = dstep(d_system)
... ax.step(s, np.squeeze(x_d), label=method, where='post')
>>> ax.axis([t[0], t[-1], x[0], 1.4])
>>> ax.legend(loc='best')
>>> fig.tight_layout()
>>> plt.show()
"""
if hasattr(system, 'to_discrete') and callable(system.to_discrete):
return system.to_discrete(dt=dt, method=method, alpha=alpha)
if len(system) == 2:
sysd = cont2discrete(tf2ss(system[0], system[1]), dt, method=method,
alpha=alpha)
return ss2tf(sysd[0], sysd[1], sysd[2], sysd[3]) + (dt,)
elif len(system) == 3:
sysd = cont2discrete(zpk2ss(system[0], system[1], system[2]), dt,
method=method, alpha=alpha)
return ss2zpk(sysd[0], sysd[1], sysd[2], sysd[3]) + (dt,)
elif len(system) == 4:
a, b, c, d = system
else:
raise ValueError("First argument must either be a tuple of 2 (tf), "
"3 (zpk), or 4 (ss) arrays.")
if method == 'gbt':
if alpha is None:
raise ValueError("Alpha parameter must be specified for the "
"generalized bilinear transform (gbt) method")
elif alpha < 0 or alpha > 1:
raise ValueError("Alpha parameter must be within the interval "
"[0,1] for the gbt method")
if method == 'gbt':
# This parameter is used repeatedly - compute once here
ima = np.eye(a.shape[0]) - alpha*dt*a
ad = linalg.solve(ima, np.eye(a.shape[0]) + (1.0-alpha)*dt*a)
bd = linalg.solve(ima, dt*b)
# Similarly solve for the output equation matrices
cd = linalg.solve(ima.transpose(), c.transpose())
cd = cd.transpose()
dd = d + alpha*np.dot(c, bd)
elif method == 'bilinear' or method == 'tustin':
return cont2discrete(system, dt, method="gbt", alpha=0.5)
elif method == 'euler' or method == 'forward_diff':
return cont2discrete(system, dt, method="gbt", alpha=0.0)
elif method == 'backward_diff':
return cont2discrete(system, dt, method="gbt", alpha=1.0)
elif method == 'zoh':
# Build an exponential matrix
em_upper = np.hstack((a, b))
# Need to stack zeros under the a and b matrices
em_lower = np.hstack((np.zeros((b.shape[1], a.shape[0])),
np.zeros((b.shape[1], b.shape[1]))))
em = np.vstack((em_upper, em_lower))
ms = linalg.expm(dt * em)
# Dispose of the lower rows
ms = ms[:a.shape[0], :]
ad = ms[:, 0:a.shape[1]]
bd = ms[:, a.shape[1]:]
cd = c
dd = d
elif method == 'foh':
# Size parameters for convenience
n = a.shape[0]
m = b.shape[1]
# Build an exponential matrix similar to 'zoh' method
em_upper = linalg.block_diag(np.block([a, b]) * dt, np.eye(m))
em_lower = zeros((m, n + 2 * m))
em = np.block([[em_upper], [em_lower]])
ms = linalg.expm(em)
# Get the three blocks from upper rows
ms11 = ms[:n, 0:n]
ms12 = ms[:n, n:n + m]
ms13 = ms[:n, n + m:]
ad = ms11
bd = ms12 - ms13 + ms11 @ ms13
cd = c
dd = d + c @ ms13
elif method == 'impulse':
if not np.allclose(d, 0):
raise ValueError("Impulse method is only applicable "
"to strictly proper systems")
ad = linalg.expm(a * dt)
bd = ad @ b * dt
cd = c
dd = c @ b * dt
else:
raise ValueError(f"Unknown transformation method '{method}'")
return ad, bd, cd, dd, dt

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,139 @@
# Author: Eric Larson
# 2014
"""Tools for MLS generation"""
import numpy as np
from ._max_len_seq_inner import _max_len_seq_inner
__all__ = ['max_len_seq']
# These are definitions of linear shift register taps for use in max_len_seq()
_mls_taps = {2: [1], 3: [2], 4: [3], 5: [3], 6: [5], 7: [6], 8: [7, 6, 1],
9: [5], 10: [7], 11: [9], 12: [11, 10, 4], 13: [12, 11, 8],
14: [13, 12, 2], 15: [14], 16: [15, 13, 4], 17: [14],
18: [11], 19: [18, 17, 14], 20: [17], 21: [19], 22: [21],
23: [18], 24: [23, 22, 17], 25: [22], 26: [25, 24, 20],
27: [26, 25, 22], 28: [25], 29: [27], 30: [29, 28, 7],
31: [28], 32: [31, 30, 10]}
def max_len_seq(nbits, state=None, length=None, taps=None):
"""
Maximum length sequence (MLS) generator.
Parameters
----------
nbits : int
Number of bits to use. Length of the resulting sequence will
be ``(2**nbits) - 1``. Note that generating long sequences
(e.g., greater than ``nbits == 16``) can take a long time.
state : array_like, optional
If array, must be of length ``nbits``, and will be cast to binary
(bool) representation. If None, a seed of ones will be used,
producing a repeatable representation. If ``state`` is all
zeros, an error is raised as this is invalid. Default: None.
length : int, optional
Number of samples to compute. If None, the entire length
``(2**nbits) - 1`` is computed.
taps : array_like, optional
Polynomial taps to use (e.g., ``[7, 6, 1]`` for an 8-bit sequence).
If None, taps will be automatically selected (for up to
``nbits == 32``).
Returns
-------
seq : array
Resulting MLS sequence of 0's and 1's.
state : array
The final state of the shift register.
Notes
-----
The algorithm for MLS generation is generically described in:
https://en.wikipedia.org/wiki/Maximum_length_sequence
The default values for taps are specifically taken from the first
option listed for each value of ``nbits`` in:
https://web.archive.org/web/20181001062252/http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm
.. versionadded:: 0.15.0
Examples
--------
MLS uses binary convention:
>>> from scipy.signal import max_len_seq
>>> max_len_seq(4)[0]
array([1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0], dtype=int8)
MLS has a white spectrum (except for DC):
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from numpy.fft import fft, ifft, fftshift, fftfreq
>>> seq = max_len_seq(6)[0]*2-1 # +1 and -1
>>> spec = fft(seq)
>>> N = len(seq)
>>> plt.plot(fftshift(fftfreq(N)), fftshift(np.abs(spec)), '.-')
>>> plt.margins(0.1, 0.1)
>>> plt.grid(True)
>>> plt.show()
Circular autocorrelation of MLS is an impulse:
>>> acorrcirc = ifft(spec * np.conj(spec)).real
>>> plt.figure()
>>> plt.plot(np.arange(-N/2+1, N/2+1), fftshift(acorrcirc), '.-')
>>> plt.margins(0.1, 0.1)
>>> plt.grid(True)
>>> plt.show()
Linear autocorrelation of MLS is approximately an impulse:
>>> acorr = np.correlate(seq, seq, 'full')
>>> plt.figure()
>>> plt.plot(np.arange(-N+1, N), acorr, '.-')
>>> plt.margins(0.1, 0.1)
>>> plt.grid(True)
>>> plt.show()
"""
taps_dtype = np.int32 if np.intp().itemsize == 4 else np.int64
if taps is None:
if nbits not in _mls_taps:
known_taps = np.array(list(_mls_taps.keys()))
raise ValueError(f'nbits must be between {known_taps.min()} and '
f'{known_taps.max()} if taps is None')
taps = np.array(_mls_taps[nbits], taps_dtype)
else:
taps = np.unique(np.array(taps, taps_dtype))[::-1]
if np.any(taps < 0) or np.any(taps > nbits) or taps.size < 1:
raise ValueError('taps must be non-empty with values between '
'zero and nbits (inclusive)')
taps = np.array(taps) # needed for Cython and Pythran
n_max = (2**nbits) - 1
if length is None:
length = n_max
else:
length = int(length)
if length < 0:
raise ValueError('length must be greater than or equal to 0')
# We use int8 instead of bool here because NumPy arrays of bools
# don't seem to work nicely with Cython
if state is None:
state = np.ones(nbits, dtype=np.int8, order='c')
else:
# makes a copy if need be, ensuring it's 0's and 1's
state = np.array(state, dtype=bool, order='c').astype(np.int8)
if state.ndim != 1 or state.size != nbits:
raise ValueError('state must be a 1-D array of size nbits')
if np.all(state == 0):
raise ValueError('state must not be all zeros')
seq = np.empty(length, dtype=np.int8, order='c')
state = _max_len_seq_inner(taps, state, nbits, length, seq)
return seq, state

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,172 @@
"""Partial replacements for numpy polynomial routines, with Array API compatibility.
This module contains both "old-style", np.poly1d, routines from the main numpy
namespace, and "new-style", np.polynomial.polynomial, routines.
To distinguish the two sets, the "new-style" routine names start with `npp_`
"""
import scipy._lib.array_api_extra as xpx
from scipy._lib._array_api import xp_promote, xp_default_dtype
def _sort_cmplx(arr, xp):
# xp.sort is undefined for complex dtypes. Here we only need some
# consistent way to sort a complex array, including equal magnitude elements.
arr = xp.asarray(arr)
if xp.isdtype(arr.dtype, 'complex floating'):
sorter = abs(arr) + xp.real(arr) + xp.imag(arr)**3
else:
sorter = arr
idxs = xp.argsort(sorter)
return arr[idxs]
def polyroots(coef, *, xp):
"""numpy.roots, best-effor replacement
"""
if coef.shape[0] < 2:
return xp.asarray([], dtype=coef.dtype)
root_func = getattr(xp, 'roots', None)
if root_func:
# NB: cupy.roots is broken in CuPy 13.x, but CuPy is handled via delegation
# so we never hit this code path with xp being cupy
return root_func(coef)
# companion matrix
n = coef.shape[0]
a = xp.eye(n - 1, n - 1, k=-1, dtype=coef.dtype)
a[:, -1] = -xp.flip(coef[1:]) / coef[0]
# non-symmetric eigenvalue problem is not in the spec but is available on e.g. torch
if hasattr(xp.linalg, 'eigvals'):
return xp.linalg.eigvals(a)
else:
import numpy as np
return xp.asarray(np.linalg.eigvals(np.asarray(a)))
# https://github.com/numpy/numpy/blob/v2.1.0/numpy/lib/_function_base_impl.py#L1874-L1925
def _trim_zeros(filt, trim='fb'):
first = 0
trim = trim.upper()
if 'F' in trim:
for i in filt:
if i != 0.:
break
else:
first = first + 1
last = filt.shape[0]
if 'B' in trim:
for i in filt[::-1]:
if i != 0.:
break
else:
last = last - 1
return filt[first:last]
# ### Old-style routines ###
# https://github.com/numpy/numpy/blob/v2.2.0/numpy/lib/_polynomial_impl.py#L1232
def _poly1d(c_or_r, *, xp):
""" Constructor of np.poly1d object from an array of coefficients (r=False)
"""
c_or_r = xpx.atleast_nd(c_or_r, ndim=1, xp=xp)
if c_or_r.ndim > 1:
raise ValueError("Polynomial must be 1d only.")
c_or_r = _trim_zeros(c_or_r, trim='f')
if c_or_r.shape[0] == 0:
c_or_r = xp.asarray([0], dtype=c_or_r.dtype)
return c_or_r
# https://github.com/numpy/numpy/blob/v2.2.0/numpy/lib/_polynomial_impl.py#L702-L779
def polyval(p, x, *, xp):
""" Old-style polynomial, `np.polyval`
"""
y = xp.zeros_like(x)
for pv in p:
y = y * x + pv
return y
# https://github.com/numpy/numpy/blob/v2.2.0/numpy/lib/_polynomial_impl.py#L34-L157
def poly(seq_of_zeros, *, xp):
# Only reproduce the 1D variant of np.poly
seq_of_zeros = xp.asarray(seq_of_zeros)
seq_of_zeros = xpx.atleast_nd(seq_of_zeros, ndim=1, xp=xp)
if seq_of_zeros.shape[0] == 0:
return 1.0
# prefer np.convolve etc, if available
convolve_func = getattr(xp, 'convolve', None)
if convolve_func is None:
from scipy.signal import convolve as convolve_func
dt = seq_of_zeros.dtype
a = xp.ones((1,), dtype=dt)
one = xp.ones_like(seq_of_zeros[0])
for zero in seq_of_zeros:
a = convolve_func(a, xp.stack((one, -zero)), mode='full')
if xp.isdtype(a.dtype, 'complex floating'):
# if complex roots are all complex conjugates, the roots are real.
roots = xp.asarray(seq_of_zeros, dtype=xp.complex128)
if xp.all(xp.sort(xp.imag(roots)) == xp.sort(xp.imag(xp.conj(roots)))):
a = xp.asarray(xp.real(a), copy=True)
return a
# https://github.com/numpy/numpy/blob/v2.2.0/numpy/lib/_polynomial_impl.py#L912
def polymul(a1, a2, *, xp):
a1, a2 = _poly1d(a1, xp=xp), _poly1d(a2, xp=xp)
# prefer np.convolve etc, if available
convolve_func = getattr(xp, 'convolve', None)
if convolve_func is None:
from scipy.signal import convolve as convolve_func
val = convolve_func(a1, a2)
return val
# ### New-style routines ###
# https://github.com/numpy/numpy/blob/v2.2.0/numpy/polynomial/polynomial.py#L663
def npp_polyval(x, c, *, xp, tensor=True):
if xp.isdtype(c.dtype, 'integral'):
c = xp.astype(c, xp_default_dtype(xp))
c = xpx.atleast_nd(c, ndim=1, xp=xp)
if isinstance(x, tuple | list):
x = xp.asarray(x)
if tensor:
c = xp.reshape(c, (c.shape + (1,)*x.ndim))
c0, _ = xp_promote(c[-1, ...], x, broadcast=True, xp=xp)
for i in range(2, c.shape[0] + 1):
c0 = c[-i, ...] + c0*x
return c0
# https://github.com/numpy/numpy/blob/v2.2.0/numpy/polynomial/polynomial.py#L758-L842
def npp_polyvalfromroots(x, r, *, xp, tensor=True):
r = xpx.atleast_nd(r, ndim=1, xp=xp)
# if r.dtype.char in '?bBhHiIlLqQpP':
# r = r.astype(np.double)
if isinstance(x, tuple | list):
x = xp.asarray(x)
if tensor:
r = xp.reshape(r, r.shape + (1,) * x.ndim)
elif x.ndim >= r.ndim:
raise ValueError("x.ndim must be < r.ndim when tensor == False")
return xp.prod(x - r, axis=0)

View file

@ -0,0 +1,357 @@
import numpy as np
from scipy.linalg import lstsq
from scipy._lib._util import float_factorial
from scipy.ndimage import convolve1d # type: ignore[attr-defined]
from ._arraytools import axis_slice
def savgol_coeffs(window_length, polyorder, deriv=0, delta=1.0, pos=None,
use="conv"):
"""Compute the coefficients for a 1-D Savitzky-Golay FIR filter.
Parameters
----------
window_length : int
The length of the filter window (i.e., the number of coefficients).
polyorder : int
The order of the polynomial used to fit the samples.
`polyorder` must be less than `window_length`.
deriv : int, optional
The order of the derivative to compute. This must be a
nonnegative integer. The default is 0, which means to filter
the data without differentiating.
delta : float, optional
The spacing of the samples to which the filter will be applied.
This is only used if deriv > 0.
pos : int or None, optional
If pos is not None, it specifies evaluation position within the
window. The default is the middle of the window.
use : str, optional
Either 'conv' or 'dot'. This argument chooses the order of the
coefficients. The default is 'conv', which means that the
coefficients are ordered to be used in a convolution. With
use='dot', the order is reversed, so the filter is applied by
dotting the coefficients with the data set.
Returns
-------
coeffs : 1-D ndarray
The filter coefficients.
See Also
--------
savgol_filter
Notes
-----
.. versionadded:: 0.14.0
References
----------
A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of Data by
Simplified Least Squares Procedures. Analytical Chemistry, 1964, 36 (8),
pp 1627-1639.
Jianwen Luo, Kui Ying, and Jing Bai. 2005. Savitzky-Golay smoothing and
differentiation filter for even number data. Signal Process.
85, 7 (July 2005), 1429-1434.
Examples
--------
>>> import numpy as np
>>> from scipy.signal import savgol_coeffs
>>> savgol_coeffs(5, 2)
array([-0.08571429, 0.34285714, 0.48571429, 0.34285714, -0.08571429])
>>> savgol_coeffs(5, 2, deriv=1)
array([ 2.00000000e-01, 1.00000000e-01, 2.07548111e-16, -1.00000000e-01,
-2.00000000e-01])
Note that use='dot' simply reverses the coefficients.
>>> savgol_coeffs(5, 2, pos=3)
array([ 0.25714286, 0.37142857, 0.34285714, 0.17142857, -0.14285714])
>>> savgol_coeffs(5, 2, pos=3, use='dot')
array([-0.14285714, 0.17142857, 0.34285714, 0.37142857, 0.25714286])
>>> savgol_coeffs(4, 2, pos=3, deriv=1, use='dot')
array([0.45, -0.85, -0.65, 1.05])
`x` contains data from the parabola x = t**2, sampled at
t = -1, 0, 1, 2, 3. `c` holds the coefficients that will compute the
derivative at the last position. When dotted with `x` the result should
be 6.
>>> x = np.array([1, 0, 1, 4, 9])
>>> c = savgol_coeffs(5, 2, pos=4, deriv=1, use='dot')
>>> c.dot(x)
6.0
"""
# An alternative method for finding the coefficients when deriv=0 is
# t = np.arange(window_length)
# unit = (t == pos).astype(int)
# coeffs = np.polyval(np.polyfit(t, unit, polyorder), t)
# The method implemented here is faster.
# To recreate the table of sample coefficients shown in the chapter on
# the Savitzy-Golay filter in the Numerical Recipes book, use
# window_length = nL + nR + 1
# pos = nL + 1
# c = savgol_coeffs(window_length, M, pos=pos, use='dot')
if polyorder >= window_length:
raise ValueError("polyorder must be less than window_length.")
halflen, rem = divmod(window_length, 2)
if pos is None:
if rem == 0:
pos = halflen - 0.5
else:
pos = halflen
if not (0 <= pos < window_length):
raise ValueError("pos must be nonnegative and less than "
"window_length.")
if use not in ['conv', 'dot']:
raise ValueError("`use` must be 'conv' or 'dot'")
if deriv > polyorder:
coeffs = np.zeros(window_length)
return coeffs
# Form the design matrix A. The columns of A are powers of the integers
# from -pos to window_length - pos - 1. The powers (i.e., rows) range
# from 0 to polyorder. (That is, A is a vandermonde matrix, but not
# necessarily square.)
x = np.arange(-pos, window_length - pos, dtype=float)
if use == "conv":
# Reverse so that result can be used in a convolution.
x = x[::-1]
order = np.arange(polyorder + 1).reshape(-1, 1)
A = x ** order
# y determines which order derivative is returned.
y = np.zeros(polyorder + 1)
# The coefficient assigned to y[deriv] scales the result to take into
# account the order of the derivative and the sample spacing.
y[deriv] = float_factorial(deriv) / (delta ** deriv)
# Find the least-squares solution of A*c = y
coeffs, _, _, _ = lstsq(A, y)
return coeffs
def _polyder(p, m):
"""Differentiate polynomials represented with coefficients.
p must be a 1-D or 2-D array. In the 2-D case, each column gives
the coefficients of a polynomial; the first row holds the coefficients
associated with the highest power. m must be a nonnegative integer.
(numpy.polyder doesn't handle the 2-D case.)
"""
if m == 0:
result = p
else:
n = len(p)
if n <= m:
result = np.zeros_like(p[:1, ...])
else:
dp = p[:-m].copy()
for k in range(m):
rng = np.arange(n - k - 1, m - k - 1, -1)
dp *= rng.reshape((n - m,) + (1,) * (p.ndim - 1))
result = dp
return result
def _fit_edge(x, window_start, window_stop, interp_start, interp_stop,
axis, polyorder, deriv, delta, y):
"""
Given an N-d array `x` and the specification of a slice of `x` from
`window_start` to `window_stop` along `axis`, create an interpolating
polynomial of each 1-D slice, and evaluate that polynomial in the slice
from `interp_start` to `interp_stop`. Put the result into the
corresponding slice of `y`.
"""
# Get the edge into a (window_length, -1) array.
x_edge = axis_slice(x, start=window_start, stop=window_stop, axis=axis)
if axis == 0 or axis == -x.ndim:
xx_edge = x_edge
swapped = False
else:
xx_edge = x_edge.swapaxes(axis, 0)
swapped = True
xx_edge = xx_edge.reshape(xx_edge.shape[0], -1)
# Fit the edges. poly_coeffs has shape (polyorder + 1, -1),
# where '-1' is the same as in xx_edge.
poly_coeffs = np.polyfit(np.arange(0, window_stop - window_start),
xx_edge, polyorder)
if deriv > 0:
poly_coeffs = _polyder(poly_coeffs, deriv)
# Compute the interpolated values for the edge.
i = np.arange(interp_start - window_start, interp_stop - window_start)
values = np.polyval(poly_coeffs, i.reshape(-1, 1)) / (delta ** deriv)
# Now put the values into the appropriate slice of y.
# First reshape values to match y.
shp = list(y.shape)
shp[0], shp[axis] = shp[axis], shp[0]
values = values.reshape(interp_stop - interp_start, *shp[1:])
if swapped:
values = values.swapaxes(0, axis)
# Get a view of the data to be replaced by values.
y_edge = axis_slice(y, start=interp_start, stop=interp_stop, axis=axis)
y_edge[...] = values
def _fit_edges_polyfit(x, window_length, polyorder, deriv, delta, axis, y):
"""
Use polynomial interpolation of x at the low and high ends of the axis
to fill in the halflen values in y.
This function just calls _fit_edge twice, once for each end of the axis.
"""
halflen = window_length // 2
_fit_edge(x, 0, window_length, 0, halflen, axis,
polyorder, deriv, delta, y)
n = x.shape[axis]
_fit_edge(x, n - window_length, n, n - halflen, n, axis,
polyorder, deriv, delta, y)
def savgol_filter(x, window_length, polyorder, deriv=0, delta=1.0,
axis=-1, mode='interp', cval=0.0):
""" Apply a Savitzky-Golay filter to an array.
This is a 1-D filter. If `x` has dimension greater than 1, `axis`
determines the axis along which the filter is applied.
Parameters
----------
x : array_like
The data to be filtered. If `x` is not a single or double precision
floating point array, it will be converted to type ``numpy.float64``
before filtering.
window_length : int
The length of the filter window (i.e., the number of coefficients).
If `mode` is 'interp', `window_length` must be less than or equal
to the size of `x`.
polyorder : int
The order of the polynomial used to fit the samples.
`polyorder` must be less than `window_length`.
deriv : int, optional
The order of the derivative to compute. This must be a
nonnegative integer. The default is 0, which means to filter
the data without differentiating.
delta : float, optional
The spacing of the samples to which the filter will be applied.
This is only used if deriv > 0. Default is 1.0.
axis : int, optional
The axis of the array `x` along which the filter is to be applied.
Default is -1.
mode : str, optional
Must be 'mirror', 'constant', 'nearest', 'wrap' or 'interp'. This
determines the type of extension to use for the padded signal to
which the filter is applied. When `mode` is 'constant', the padding
value is given by `cval`. See the Notes for more details on 'mirror',
'constant', 'wrap', and 'nearest'.
When the 'interp' mode is selected (the default), no extension
is used. Instead, a degree `polyorder` polynomial is fit to the
last `window_length` values of the edges, and this polynomial is
used to evaluate the last `window_length // 2` output values.
cval : scalar, optional
Value to fill past the edges of the input if `mode` is 'constant'.
Default is 0.0.
Returns
-------
y : ndarray, same shape as `x`
The filtered data.
See Also
--------
savgol_coeffs
Notes
-----
Details on the `mode` options:
'mirror':
Repeats the values at the edges in reverse order. The value
closest to the edge is not included.
'nearest':
The extension contains the nearest input value.
'constant':
The extension contains the value given by the `cval` argument.
'wrap':
The extension contains the values from the other end of the array.
For example, if the input is [1, 2, 3, 4, 5, 6, 7, 8], and
`window_length` is 7, the following shows the extended data for
the various `mode` options (assuming `cval` is 0)::
mode | Ext | Input | Ext
-----------+---------+------------------------+---------
'mirror' | 4 3 2 | 1 2 3 4 5 6 7 8 | 7 6 5
'nearest' | 1 1 1 | 1 2 3 4 5 6 7 8 | 8 8 8
'constant' | 0 0 0 | 1 2 3 4 5 6 7 8 | 0 0 0
'wrap' | 6 7 8 | 1 2 3 4 5 6 7 8 | 1 2 3
.. versionadded:: 0.14.0
Examples
--------
>>> import numpy as np
>>> from scipy.signal import savgol_filter
>>> np.set_printoptions(precision=2) # For compact display.
>>> x = np.array([2, 2, 5, 2, 1, 0, 1, 4, 9])
Filter with a window length of 5 and a degree 2 polynomial. Use
the defaults for all other parameters.
>>> savgol_filter(x, 5, 2)
array([1.66, 3.17, 3.54, 2.86, 0.66, 0.17, 1. , 4. , 9. ])
Note that the last five values in x are samples of a parabola, so
when mode='interp' (the default) is used with polyorder=2, the last
three values are unchanged. Compare that to, for example,
`mode='nearest'`:
>>> savgol_filter(x, 5, 2, mode='nearest')
array([1.74, 3.03, 3.54, 2.86, 0.66, 0.17, 1. , 4.6 , 7.97])
"""
if mode not in ["mirror", "constant", "nearest", "interp", "wrap"]:
raise ValueError("mode must be 'mirror', 'constant', 'nearest' "
"'wrap' or 'interp'.")
x = np.asarray(x)
# Ensure that x is either single or double precision floating point.
if x.dtype != np.float64 and x.dtype != np.float32:
x = x.astype(np.float64)
coeffs = savgol_coeffs(window_length, polyorder, deriv=deriv, delta=delta)
if mode == "interp":
if window_length > x.shape[axis]:
raise ValueError("If mode is 'interp', window_length must be less "
"than or equal to the size of x.")
# Do not pad. Instead, for the elements within `window_length // 2`
# of the ends of the sequence, use the polynomial that is fitted to
# the last `window_length` elements.
y = convolve1d(x, coeffs, axis=axis, mode="constant")
_fit_edges_polyfit(x, window_length, polyorder, deriv, delta, axis, y)
else:
# Any mode other than 'interp' is passed on to ndimage.convolve1d.
y = convolve1d(x, coeffs, axis=axis, mode=mode, cval=cval)
return y

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,30 @@
"""This is the 'bare' scipy.signal API.
This --- private! --- module only collects implementations of public API
for _support_alternative_backends.
The latter --- also private! --- module adds delegation to CuPy etc and
re-exports decorated names to __init__.py
"""
from . import _sigtools, windows # noqa: F401
from ._waveforms import * # noqa: F403
from ._max_len_seq import max_len_seq # noqa: F401
from ._upfirdn import upfirdn # noqa: F401
from ._spline import sepfir2d # noqa: F401
from ._spline_filters import * # noqa: F403
from ._filter_design import * # noqa: F403
from ._fir_filter_design import * # noqa: F403
from ._ltisys import * # noqa: F403
from ._lti_conversion import * # noqa: F403
from ._signaltools import * # noqa: F403
from ._savitzky_golay import savgol_coeffs, savgol_filter # noqa: F401
from ._spectral_py import * # noqa: F403
from ._short_time_fft import * # noqa: F403
from ._peak_finding import * # noqa: F403
from ._czt import * # noqa: F403
from .windows import get_window # keep this one in signal namespace # noqa: F401
__all__ = [s for s in dir() if not s.startswith('_')]

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,34 @@
import numpy as np
from numpy.typing import NDArray
FloatingArray = NDArray[np.float32] | NDArray[np.float64]
ComplexArray = NDArray[np.complex64] | NDArray[np.complex128]
FloatingComplexArray = FloatingArray | ComplexArray
def symiirorder1_ic(signal: FloatingComplexArray,
c0: float,
z1: float,
precision: float) -> FloatingComplexArray:
...
def symiirorder2_ic_fwd(signal: FloatingArray,
r: float,
omega: float,
precision: float) -> FloatingArray:
...
def symiirorder2_ic_bwd(signal: FloatingArray,
r: float,
omega: float,
precision: float) -> FloatingArray:
...
def sepfir2d(input: FloatingComplexArray,
hrow: FloatingComplexArray,
hcol: FloatingComplexArray) -> FloatingComplexArray:
...

View file

@ -0,0 +1,848 @@
import math
from numpy import (zeros_like, array, tan, arange, floor,
r_, atleast_1d, greater, cos, add, sin,
moveaxis, abs, complex64, float32)
import numpy as np
from scipy._lib._array_api import array_namespace, xp_promote
from scipy._lib._util import normalize_axis_index
# From splinemodule.c
from ._spline import sepfir2d, symiirorder1_ic, symiirorder2_ic_fwd, symiirorder2_ic_bwd
from ._signaltools import lfilter, sosfilt, lfiltic
from ._arraytools import axis_slice, axis_reverse
from scipy.interpolate import BSpline
__all__ = ['spline_filter', 'gauss_spline',
'cspline1d', 'qspline1d', 'qspline2d', 'cspline2d',
'cspline1d_eval', 'qspline1d_eval', 'symiirorder1', 'symiirorder2']
def spline_filter(Iin, lmbda=5.0):
"""Smoothing spline (cubic) filtering of a rank-2 array.
Filter an input data set, `Iin`, using a (cubic) smoothing spline of
fall-off `lmbda`.
Parameters
----------
Iin : array_like
input data set
lmbda : float, optional
spline smoothing fall-off value, default is `5.0`.
Returns
-------
res : ndarray
filtered input data
Examples
--------
We can filter an multi dimensional signal (ex: 2D image) using cubic
B-spline filter:
>>> import numpy as np
>>> from scipy.signal import spline_filter
>>> import matplotlib.pyplot as plt
>>> orig_img = np.eye(20) # create an image
>>> orig_img[10, :] = 1.0
>>> sp_filter = spline_filter(orig_img, lmbda=0.1)
>>> f, ax = plt.subplots(1, 2, sharex=True)
>>> for ind, data in enumerate([[orig_img, "original image"],
... [sp_filter, "spline filter"]]):
... ax[ind].imshow(data[0], cmap='gray_r')
... ax[ind].set_title(data[1])
>>> plt.tight_layout()
>>> plt.show()
"""
xp = array_namespace(Iin)
Iin = np.asarray(Iin)
if Iin.dtype not in [np.float32, np.float64, np.complex64, np.complex128]:
raise TypeError(f"Invalid data type for Iin: {Iin.dtype = }")
# XXX: note that complex-valued computations are done in single precision
# this is historic, and the root reason is unclear,
# see https://github.com/scipy/scipy/issues/9209
# Attempting to work in complex double precision leads to symiirorder1
# failing to converge for the boundary conditions.
intype = Iin.dtype
hcol = array([1.0, 4.0, 1.0], np.float32) / 6.0
if intype == np.complex128:
Iin = Iin.astype(np.complex64)
ck = cspline2d(Iin, lmbda)
out = sepfir2d(ck, hcol, hcol)
out = out.astype(intype)
return xp.asarray(out)
_splinefunc_cache = {}
def gauss_spline(x, n):
r"""Gaussian approximation to B-spline basis function of order n.
Parameters
----------
x : array_like
a knot vector
n : int
The order of the spline. Must be non-negative, i.e., n >= 0
Returns
-------
res : ndarray
B-spline basis function values approximated by a zero-mean Gaussian
function.
Notes
-----
The B-spline basis function can be approximated well by a zero-mean
Gaussian function with standard-deviation equal to :math:`\sigma=(n+1)/12`
for large `n` :
.. math:: \frac{1}{\sqrt {2\pi\sigma^2}}exp(-\frac{x^2}{2\sigma})
References
----------
.. [1] Bouma H., Vilanova A., Bescos J.O., ter Haar Romeny B.M., Gerritsen
F.A. (2007) Fast and Accurate Gaussian Derivatives Based on B-Splines. In:
Sgallari F., Murli A., Paragios N. (eds) Scale Space and Variational
Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer
Science, vol 4485. Springer, Berlin, Heidelberg
.. [2] http://folk.uio.no/inf3330/scripting/doc/python/SciPy/tutorial/old/node24.html
Examples
--------
We can calculate B-Spline basis functions approximated by a gaussian
distribution:
>>> import numpy as np
>>> from scipy.signal import gauss_spline
>>> knots = np.array([-1.0, 0.0, -1.0])
>>> gauss_spline(knots, 3)
array([0.15418033, 0.6909883, 0.15418033]) # may vary
"""
xp = array_namespace(x)
x = xp.asarray(x)
signsq = (n + 1) / 12.0
return 1 / math.sqrt(2 * math.pi * signsq) * xp.exp(-x ** 2 / 2 / signsq)
def _cubic(x):
xp = array_namespace(x)
x = np.asarray(x, dtype=float)
b = BSpline.basis_element([-2, -1, 0, 1, 2], extrapolate=False)
out = b(x)
out[(x < -2) | (x > 2)] = 0
return xp.asarray(out)
def _quadratic(x):
xp = array_namespace(x)
x = abs(np.asarray(x, dtype=float))
b = BSpline.basis_element([-1.5, -0.5, 0.5, 1.5], extrapolate=False)
out = b(x)
out[(x < -1.5) | (x > 1.5)] = 0
return xp.asarray(out)
def _coeff_smooth(lam):
xi = 1 - 96 * lam + 24 * lam * math.sqrt(3 + 144 * lam)
omeg = math.atan2(math.sqrt(144 * lam - 1), math.sqrt(xi))
rho = (24 * lam - 1 - math.sqrt(xi)) / (24 * lam)
rho = rho * math.sqrt((48 * lam + 24 * lam * math.sqrt(3 + 144 * lam)) / xi)
return rho, omeg
def _hc(k, cs, rho, omega):
return (cs / sin(omega) * (rho ** k) * sin(omega * (k + 1)) *
greater(k, -1))
def _hs(k, cs, rho, omega):
c0 = (cs * cs * (1 + rho * rho) / (1 - rho * rho) /
(1 - 2 * rho * rho * cos(2 * omega) + rho ** 4))
gamma = (1 - rho * rho) / (1 + rho * rho) / tan(omega)
ak = abs(k)
return c0 * rho ** ak * (cos(omega * ak) + gamma * sin(omega * ak))
def _cubic_smooth_coeff(signal, lamb):
signal = np.asarray(signal)
rho, omega = _coeff_smooth(lamb)
cs = 1 - 2 * rho * cos(omega) + rho * rho
K = len(signal)
k = arange(K)
zi_2 = (_hc(0, cs, rho, omega) * signal[0] +
add.reduce(_hc(k + 1, cs, rho, omega) * signal))
zi_1 = (_hc(0, cs, rho, omega) * signal[0] +
_hc(1, cs, rho, omega) * signal[1] +
add.reduce(_hc(k + 2, cs, rho, omega) * signal))
# Forward filter:
# for n in range(2, K):
# yp[n] = (cs * signal[n] + 2 * rho * cos(omega) * yp[n - 1] -
# rho * rho * yp[n - 2])
zi = lfiltic(cs, r_[1, -2 * rho * cos(omega), rho * rho], r_[zi_1, zi_2])
zi = zi.reshape(1, -1)
sos = r_[cs, 0, 0, 1, -2 * rho * cos(omega), rho * rho]
sos = sos.reshape(1, -1)
yp, _ = sosfilt(sos, signal[2:], zi=zi)
yp = r_[zi_2, zi_1, yp]
# Reverse filter:
# for n in range(K - 3, -1, -1):
# y[n] = (cs * yp[n] + 2 * rho * cos(omega) * y[n + 1] -
# rho * rho * y[n + 2])
zi_2 = add.reduce((_hs(k, cs, rho, omega) +
_hs(k + 1, cs, rho, omega)) * signal[::-1])
zi_1 = add.reduce((_hs(k - 1, cs, rho, omega) +
_hs(k + 2, cs, rho, omega)) * signal[::-1])
zi = lfiltic(cs, r_[1, -2 * rho * cos(omega), rho * rho], r_[zi_1, zi_2])
zi = zi.reshape(1, -1)
y, _ = sosfilt(sos, yp[-3::-1], zi=zi)
y = r_[y[::-1], zi_1, zi_2]
return y
def _cubic_coeff(signal):
signal = np.asarray(signal)
zi = -2 + math.sqrt(3)
K = len(signal)
powers = zi ** np.arange(K)
if K == 1:
yplus = signal[0] + zi * add.reduce(powers * signal)
output = zi / (zi - 1) * yplus
return atleast_1d(output)
# Forward filter:
# yplus[0] = signal[0] + zi * add.reduce(powers * signal)
# for k in range(1, K):
# yplus[k] = signal[k] + zi * yplus[k - 1]
state = lfiltic(1, np.r_[1, -zi], np.atleast_1d(add.reduce(powers * signal)))
b = np.ones(1)
a = np.r_[1, -zi]
yplus, _ = lfilter(b, a, signal, zi=state)
# Reverse filter:
# output[K - 1] = zi / (zi - 1) * yplus[K - 1]
# for k in range(K - 2, -1, -1):
# output[k] = zi * (output[k + 1] - yplus[k])
out_last = zi / (zi - 1) * yplus[K - 1]
state = lfiltic(-zi, r_[1, -zi], np.atleast_1d(out_last))
b = np.asarray([-zi])
output, _ = lfilter(b, a, yplus[-2::-1], zi=state)
output = np.r_[output[::-1], out_last]
return output * 6.0
def _quadratic_coeff(signal):
signal = np.asarray(signal)
zi = -3 + 2 * math.sqrt(2.0)
K = len(signal)
powers = zi ** np.arange(K)
if K == 1:
yplus = signal[0] + zi * np.add.reduce(powers * signal)
output = zi / (zi - 1) * yplus
return atleast_1d(output)
# Forward filter:
# yplus[0] = signal[0] + zi * add.reduce(powers * signal)
# for k in range(1, K):
# yplus[k] = signal[k] + zi * yplus[k - 1]
state = lfiltic(1, np.r_[1, -zi], np.atleast_1d(np.add.reduce(powers * signal)))
b = np.ones(1)
a = np.r_[1, -zi]
yplus, _ = lfilter(b, a, signal, zi=state)
# Reverse filter:
# output[K - 1] = zi / (zi - 1) * yplus[K - 1]
# for k in range(K - 2, -1, -1):
# output[k] = zi * (output[k + 1] - yplus[k])
out_last = zi / (zi - 1) * yplus[K - 1]
state = lfiltic(-zi, r_[1, -zi], np.atleast_1d(out_last))
b = np.asarray([-zi])
output, _ = lfilter(b, a, yplus[-2::-1], zi=state)
output = np.r_[output[::-1], out_last]
return output * 8.0
def compute_root_from_lambda(lamb):
tmp = math.sqrt(3 + 144 * lamb)
xi = 1 - 96 * lamb + 24 * lamb * tmp
omega = math.atan(math.sqrt((144 * lamb - 1.0) / xi))
tmp2 = math.sqrt(xi)
r = ((24 * lamb - 1 - tmp2) / (24 * lamb) *
math.sqrt(48*lamb + 24 * lamb * tmp) / tmp2)
return r, omega
def cspline1d(signal, lamb=0.0):
"""
Compute cubic spline coefficients for rank-1 array.
Find the cubic spline coefficients for a 1-D signal assuming
mirror-symmetric boundary conditions. To obtain the signal back from the
spline representation mirror-symmetric-convolve these coefficients with a
length 3 FIR window [1.0, 4.0, 1.0]/ 6.0 .
Parameters
----------
signal : ndarray
A rank-1 array representing samples of a signal.
lamb : float, optional
Smoothing coefficient, default is 0.0.
Returns
-------
c : ndarray
Cubic spline coefficients.
See Also
--------
cspline1d_eval : Evaluate a cubic spline at the new set of points.
Examples
--------
We can filter a signal to reduce and smooth out high-frequency noise with
a cubic spline:
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.signal import cspline1d, cspline1d_eval
>>> rng = np.random.default_rng()
>>> sig = np.repeat([0., 1., 0.], 100)
>>> sig += rng.standard_normal(len(sig))*0.05 # add noise
>>> time = np.linspace(0, len(sig))
>>> filtered = cspline1d_eval(cspline1d(sig), time)
>>> plt.plot(sig, label="signal")
>>> plt.plot(time, filtered, label="filtered")
>>> plt.legend()
>>> plt.show()
"""
xp = array_namespace(signal)
if lamb != 0.0:
ret = _cubic_smooth_coeff(signal, lamb)
else:
ret = _cubic_coeff(signal)
return xp.asarray(ret)
def qspline1d(signal, lamb=0.0):
"""Compute quadratic spline coefficients for rank-1 array.
Parameters
----------
signal : ndarray
A rank-1 array representing samples of a signal.
lamb : float, optional
Smoothing coefficient (must be zero for now).
Returns
-------
c : ndarray
Quadratic spline coefficients.
See Also
--------
qspline1d_eval : Evaluate a quadratic spline at the new set of points.
Notes
-----
Find the quadratic spline coefficients for a 1-D signal assuming
mirror-symmetric boundary conditions. To obtain the signal back from the
spline representation mirror-symmetric-convolve these coefficients with a
length 3 FIR window [1.0, 6.0, 1.0]/ 8.0 .
Examples
--------
We can filter a signal to reduce and smooth out high-frequency noise with
a quadratic spline:
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.signal import qspline1d, qspline1d_eval
>>> rng = np.random.default_rng()
>>> sig = np.repeat([0., 1., 0.], 100)
>>> sig += rng.standard_normal(len(sig))*0.05 # add noise
>>> time = np.linspace(0, len(sig))
>>> filtered = qspline1d_eval(qspline1d(sig), time)
>>> plt.plot(sig, label="signal")
>>> plt.plot(time, filtered, label="filtered")
>>> plt.legend()
>>> plt.show()
"""
xp = array_namespace(signal)
if lamb != 0.0:
raise ValueError("Smoothing quadratic splines not supported yet.")
else:
return xp.asarray(_quadratic_coeff(signal))
def collapse_2d(x, axis):
x = moveaxis(x, axis, -1)
x_shape = x.shape
x = x.reshape(-1, x.shape[-1])
if not x.flags.c_contiguous:
x = x.copy()
return x, x_shape
def symiirorder_nd(func, input, *args, axis=-1, **kwargs):
axis = normalize_axis_index(axis, input.ndim)
input_shape = input.shape
input_ndim = input.ndim
if input.ndim > 1:
input, input_shape = collapse_2d(input, axis)
out = func(input, *args, **kwargs)
if input_ndim > 1:
out = out.reshape(input_shape)
out = moveaxis(out, -1, axis)
if not out.flags.c_contiguous:
out = out.copy()
return out
def qspline2d(signal, lamb=0.0, precision=-1.0):
"""
Coefficients for 2-D quadratic (2nd order) B-spline.
Return the second-order B-spline coefficients over a regularly spaced
input grid for the two-dimensional input image.
Parameters
----------
input : ndarray
The input signal.
lamb : float
Specifies the amount of smoothing in the transfer function.
precision : float
Specifies the precision for computing the infinite sum needed to apply
mirror-symmetric boundary conditions.
Returns
-------
output : ndarray
The filtered signal.
"""
if precision < 0.0 or precision >= 1.0:
if signal.dtype in [float32, complex64]:
precision = 1e-3
else:
precision = 1e-6
if lamb > 0:
raise ValueError('lambda must be negative or zero')
# normal quadratic spline
r = -3 + 2 * math.sqrt(2.0)
c0 = -r * 8.0
z1 = r
out = symiirorder_nd(symiirorder1, signal, c0, z1, precision, axis=-1)
out = symiirorder_nd(symiirorder1, out, c0, z1, precision, axis=0)
return out
def cspline2d(signal, lamb=0.0, precision=-1.0):
"""
Coefficients for 2-D cubic (3rd order) B-spline.
Return the third-order B-spline coefficients over a regularly spaced
input grid for the two-dimensional input image.
Parameters
----------
input : ndarray
The input signal.
lamb : float
Specifies the amount of smoothing in the transfer function.
precision : float
Specifies the precision for computing the infinite sum needed to apply
mirror-symmetric boundary conditions.
Returns
-------
output : ndarray
The filtered signal.
"""
xp = array_namespace(signal)
signal = np.asarray(signal)
if precision < 0.0 or precision >= 1.0:
if signal.dtype in [np.float32, np.complex64]:
precision = 1e-3
else:
precision = 1e-6
if lamb <= 1 / 144.0:
# Normal cubic spline
r = -2 + math.sqrt(3.0)
out = symiirorder_nd(
symiirorder1, signal, -r * 6.0, r, precision=precision, axis=-1)
out = symiirorder_nd(
symiirorder1, out, -r * 6.0, r, precision=precision, axis=0)
return out
r, omega = compute_root_from_lambda(lamb)
out = symiirorder_nd(symiirorder2, signal, r, omega,
precision=precision, axis=-1)
out = symiirorder_nd(symiirorder2, out, r, omega,
precision=precision, axis=0)
return xp.asarray(out)
def cspline1d_eval(cj, newx, dx=1.0, x0=0):
"""Evaluate a cubic spline at the new set of points.
`dx` is the old sample-spacing while `x0` was the old origin. In
other-words the old-sample points (knot-points) for which the `cj`
represent spline coefficients were at equally-spaced points of:
oldx = x0 + j*dx j=0...N-1, with N=len(cj)
Edges are handled using mirror-symmetric boundary conditions.
Parameters
----------
cj : ndarray
cublic spline coefficients
newx : ndarray
New set of points.
dx : float, optional
Old sample-spacing, the default value is 1.0.
x0 : int, optional
Old origin, the default value is 0.
Returns
-------
res : ndarray
Evaluated a cubic spline points.
See Also
--------
cspline1d : Compute cubic spline coefficients for rank-1 array.
Examples
--------
We can filter a signal to reduce and smooth out high-frequency noise with
a cubic spline:
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.signal import cspline1d, cspline1d_eval
>>> rng = np.random.default_rng()
>>> sig = np.repeat([0., 1., 0.], 100)
>>> sig += rng.standard_normal(len(sig))*0.05 # add noise
>>> time = np.linspace(0, len(sig))
>>> filtered = cspline1d_eval(cspline1d(sig), time)
>>> plt.plot(sig, label="signal")
>>> plt.plot(time, filtered, label="filtered")
>>> plt.legend()
>>> plt.show()
"""
xp = array_namespace(cj, newx)
newx = (np.asarray(newx) - x0) / float(dx)
cj = np.asarray(cj)
if cj.size == 0:
raise ValueError("Spline coefficients 'cj' must not be empty.")
res = zeros_like(newx, dtype=cj.dtype)
if res.size == 0:
return xp.asarray(res)
N = len(cj)
cond1 = newx < 0
cond2 = newx > (N - 1)
cond3 = ~(cond1 | cond2)
# handle general mirror-symmetry
res[cond1] = cspline1d_eval(cj, -newx[cond1])
res[cond2] = cspline1d_eval(cj, 2 * (N - 1) - newx[cond2])
newx = newx[cond3]
if newx.size == 0:
return xp.asarray(res)
result = zeros_like(newx, dtype=cj.dtype)
jlower = floor(newx - 2).astype(int) + 1
for i in range(4):
thisj = jlower + i
indj = thisj.clip(0, N - 1) # handle edge cases
result += cj[indj] * _cubic(newx - thisj)
res[cond3] = result
return xp.asarray(res)
def qspline1d_eval(cj, newx, dx=1.0, x0=0):
"""Evaluate a quadratic spline at the new set of points.
Parameters
----------
cj : ndarray
Quadratic spline coefficients
newx : ndarray
New set of points.
dx : float, optional
Old sample-spacing, the default value is 1.0.
x0 : int, optional
Old origin, the default value is 0.
Returns
-------
res : ndarray
Evaluated a quadratic spline points.
See Also
--------
qspline1d : Compute quadratic spline coefficients for rank-1 array.
Notes
-----
`dx` is the old sample-spacing while `x0` was the old origin. In
other-words the old-sample points (knot-points) for which the `cj`
represent spline coefficients were at equally-spaced points of::
oldx = x0 + j*dx j=0...N-1, with N=len(cj)
Edges are handled using mirror-symmetric boundary conditions.
Examples
--------
We can filter a signal to reduce and smooth out high-frequency noise with
a quadratic spline:
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.signal import qspline1d, qspline1d_eval
>>> rng = np.random.default_rng()
>>> sig = np.repeat([0., 1., 0.], 100)
>>> sig += rng.standard_normal(len(sig))*0.05 # add noise
>>> time = np.linspace(0, len(sig))
>>> filtered = qspline1d_eval(qspline1d(sig), time)
>>> plt.plot(sig, label="signal")
>>> plt.plot(time, filtered, label="filtered")
>>> plt.legend()
>>> plt.show()
"""
xp = array_namespace(newx, cj)
newx = (np.asarray(newx) - x0) / dx
res = np.zeros_like(newx)
if res.size == 0:
return xp.asarray(res)
cj = np.asarray(cj)
if cj.size == 0:
raise ValueError("Spline coefficients 'cj' must not be empty.")
N = len(cj)
cond1 = newx < 0
cond2 = newx > (N - 1)
cond3 = ~(cond1 | cond2)
# handle general mirror-symmetry
res[cond1] = qspline1d_eval(cj, -newx[cond1])
res[cond2] = qspline1d_eval(cj, 2 * (N - 1) - newx[cond2])
newx = newx[cond3]
if newx.size == 0:
return xp.asarray(res)
result = zeros_like(newx)
jlower = floor(newx - 1.5).astype(int) + 1
for i in range(3):
thisj = jlower + i
indj = thisj.clip(0, N - 1) # handle edge cases
result += cj[indj] * _quadratic(newx - thisj)
res[cond3] = result
return xp.asarray(res)
def symiirorder1(signal, c0, z1, precision=-1.0):
"""
Implement a smoothing IIR filter with mirror-symmetric boundary conditions
using a cascade of first-order sections.
The second section uses a reversed sequence. This implements a system with
the following transfer function and mirror-symmetric boundary conditions::
c0
H(z) = ---------------------
(1-z1/z) (1 - z1 z)
The resulting signal will have mirror symmetric boundary conditions
as well.
Parameters
----------
signal : ndarray
The input signal. If 2D, then the filter will be applied in a batched
fashion across the last axis.
c0, z1 : scalar
Parameters in the transfer function.
precision :
Specifies the precision for calculating initial conditions
of the recursive filter based on mirror-symmetric input.
Returns
-------
output : ndarray
The filtered signal.
"""
xp = array_namespace(signal)
signal = xp_promote(signal, force_floating=True, xp=xp)
# This function uses C internals
signal = np.asarray(signal)
if abs(z1) >= 1:
raise ValueError('|z1| must be less than 1.0')
if signal.ndim > 2:
raise ValueError('Input must be 1D or 2D')
squeeze_dim = False
if signal.ndim == 1:
signal = signal[None, :]
squeeze_dim = True
y0 = symiirorder1_ic(signal, z1, precision)
# Apply first the system 1 / (1 - z1 * z^-1)
b = np.ones(1, dtype=signal.dtype)
a = np.r_[1, -z1]
a = a.astype(signal.dtype)
# Compute the initial state for lfilter.
zii = y0 * z1
y1, _ = lfilter(b, a, axis_slice(signal, 1), zi=zii)
y1 = np.c_[y0, y1]
# Compute backward symmetric condition and apply the system
# c0 / (1 - z1 * z)
b = np.asarray([c0], dtype=signal.dtype)
out_last = -c0 / (z1 - 1.0) * axis_slice(y1, -1)
# Compute the initial state for lfilter.
zii = out_last * z1
# Apply the system c0 / (1 - z1 * z) by reversing the output of the previous stage
out, _ = lfilter(b, a, axis_slice(y1, -2, step=-1), zi=zii)
out = np.c_[axis_reverse(out), out_last]
if squeeze_dim:
out = out[0]
return xp.asarray(out)
def symiirorder2(input, r, omega, precision=-1.0):
"""
Implement a smoothing IIR filter with mirror-symmetric boundary conditions
using a cascade of second-order sections.
The second section uses a reversed sequence. This implements the following
transfer function::
cs^2
H(z) = ---------------------------------------
(1 - a2/z - a3/z^2) (1 - a2 z - a3 z^2 )
where::
a2 = 2 * r * cos(omega)
a3 = - r ** 2
cs = 1 - 2 * r * cos(omega) + r ** 2
Parameters
----------
input : ndarray
The input signal.
r, omega : float
Parameters in the transfer function.
precision : float
Specifies the precision for calculating initial conditions
of the recursive filter based on mirror-symmetric input.
Returns
-------
output : ndarray
The filtered signal.
"""
xp = array_namespace(input)
input = xp_promote(input, force_floating=True, xp=xp)
# This function uses C internals
input = np.ascontiguousarray(input)
if r >= 1.0:
raise ValueError('r must be less than 1.0')
if input.ndim > 2:
raise ValueError('Input must be 1D or 2D')
squeeze_dim = False
if input.ndim == 1:
input = input[None, :]
squeeze_dim = True
rsq = r * r
a2 = 2 * r * math.cos(omega)
a3 = -rsq
cs = 1 - 2 * r * math.cos(omega) + rsq
sos = np.asarray([cs, 0, 0, 1, -a2, -a3], dtype=input.dtype)
# Find the starting (forward) conditions.
ic_fwd = symiirorder2_ic_fwd(input, r, omega, precision)
# Apply first the system cs / (1 - a2 * z^-1 - a3 * z^-2)
# Compute the initial conditions in the form expected by sosfilt
# coef = np.asarray([[a3, a2], [0, a3]], dtype=input.dtype)
coef = np.asarray([[a3, a2], [0, a3]], dtype=input.dtype)
zi = np.matmul(coef, ic_fwd[:, :, None])[:, :, 0]
y_fwd, _ = sosfilt(sos, axis_slice(input, 2), zi=zi[None])
y_fwd = np.c_[ic_fwd, y_fwd]
# Then compute the symmetric backward starting conditions
ic_bwd = symiirorder2_ic_bwd(input, r, omega, precision)
# Apply the system cs / (1 - a2 * z^1 - a3 * z^2)
# Compute the initial conditions in the form expected by sosfilt
zi = np.matmul(coef, ic_bwd[:, :, None])[:, :, 0]
y, _ = sosfilt(sos, axis_slice(y_fwd, -3, step=-1), zi=zi[None])
out = np.c_[axis_reverse(y), axis_reverse(ic_bwd)]
if squeeze_dim:
out = out[0]
return xp.asarray(out)

View file

@ -0,0 +1,73 @@
import functools
from scipy._lib._array_api import (
is_cupy, is_jax, scipy_namespace_for, SCIPY_ARRAY_API
)
from ._signal_api import * # noqa: F403
from . import _signal_api
from . import _delegators
__all__ = _signal_api.__all__
MODULE_NAME = 'signal'
# jax.scipy.signal has only partial coverage of scipy.signal, so we keep the list
# of functions we can delegate to JAX
# https://jax.readthedocs.io/en/latest/jax.scipy.html
JAX_SIGNAL_FUNCS = [
'fftconvolve', 'convolve', 'convolve2d', 'correlate', 'correlate2d',
'csd', 'detrend', 'istft', 'welch'
]
# some cupyx.scipy.signal functions are incompatible with their scipy counterparts
CUPY_BLACKLIST = ['lfilter_zi', 'sosfilt_zi', 'get_window', 'envelope', 'remez']
# freqz_sos is a sosfreqz rename, and cupy does not have the new name yet (in v13.x)
CUPY_RENAMES = {'freqz_sos': 'sosfreqz'}
def delegate_xp(delegator, module_name):
def inner(func):
@functools.wraps(func)
def wrapper(*args, **kwds):
try:
xp = delegator(*args, **kwds)
except TypeError:
# object arrays
import numpy as np
xp = np
# try delegating to a cupyx/jax namesake
if is_cupy(xp) and func.__name__ not in CUPY_BLACKLIST:
func_name = CUPY_RENAMES.get(func.__name__, func.__name__)
# https://github.com/cupy/cupy/issues/8336
import importlib
cupyx_module = importlib.import_module(f"cupyx.scipy.{module_name}")
cupyx_func = getattr(cupyx_module, func_name)
return cupyx_func(*args, **kwds)
elif is_jax(xp) and func.__name__ in JAX_SIGNAL_FUNCS:
spx = scipy_namespace_for(xp)
jax_module = getattr(spx, module_name)
jax_func = getattr(jax_module, func.__name__)
return jax_func(*args, **kwds)
else:
# the original function
return func(*args, **kwds)
return wrapper
return inner
# ### decorate ###
for obj_name in _signal_api.__all__:
bare_obj = getattr(_signal_api, obj_name)
delegator = getattr(_delegators, obj_name + "_signature", None)
if SCIPY_ARRAY_API and delegator is not None:
f = delegate_xp(delegator, MODULE_NAME)(bare_obj)
else:
f = bare_obj
# add the decorated function to the namespace, to be imported in __init__.py
vars()[obj_name] = f

View file

@ -0,0 +1,219 @@
# Code adapted from "upfirdn" python library with permission:
#
# Copyright (c) 2009, Motorola, Inc
#
# All Rights Reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# * Neither the name of Motorola nor the names of its contributors may be
# used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
# THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy as np
from scipy._lib._array_api import array_namespace
from ._upfirdn_apply import _output_len, _apply, mode_enum
__all__ = ['upfirdn', '_output_len']
_upfirdn_modes = [
'constant', 'wrap', 'edge', 'smooth', 'symmetric', 'reflect',
'antisymmetric', 'antireflect', 'line',
]
def _pad_h(h, up):
"""Store coefficients in a transposed, flipped arrangement.
For example, suppose upRate is 3, and the
input number of coefficients is 10, represented as h[0], ..., h[9].
Then the internal buffer will look like this::
h[9], h[6], h[3], h[0], // flipped phase 0 coefs
0, h[7], h[4], h[1], // flipped phase 1 coefs (zero-padded)
0, h[8], h[5], h[2], // flipped phase 2 coefs (zero-padded)
"""
h_padlen = len(h) + (-len(h) % up)
h_full = np.zeros(h_padlen, h.dtype)
h_full[:len(h)] = h
h_full = h_full.reshape(-1, up).T[:, ::-1].ravel()
return h_full
def _check_mode(mode):
mode = mode.lower()
enum = mode_enum(mode)
return enum
class _UpFIRDn:
"""Helper for resampling."""
def __init__(self, h, x_dtype, up, down):
h = np.asarray(h)
if h.ndim != 1 or h.size == 0:
raise ValueError('h must be 1-D with non-zero length')
self._output_type = np.result_type(h.dtype, x_dtype, np.float32)
h = np.asarray(h, self._output_type)
self._up = int(up)
self._down = int(down)
if self._up < 1 or self._down < 1:
raise ValueError('Both up and down must be >= 1')
# This both transposes, and "flips" each phase for filtering
self._h_trans_flip = _pad_h(h, self._up)
self._h_trans_flip = np.ascontiguousarray(self._h_trans_flip)
self._h_len_orig = len(h)
def apply_filter(self, x, axis=-1, mode='constant', cval=0):
"""Apply the prepared filter to the specified axis of N-D signal x."""
output_len = _output_len(self._h_len_orig, x.shape[axis],
self._up, self._down)
# Explicit use of np.int64 for output_shape dtype avoids OverflowError
# when allocating large array on platforms where intp is 32 bits.
output_shape = np.asarray(x.shape, dtype=np.int64)
output_shape[axis] = output_len
out = np.zeros(output_shape, dtype=self._output_type, order='C')
axis = axis % x.ndim
mode = _check_mode(mode)
_apply(np.asarray(x, self._output_type),
self._h_trans_flip, out,
self._up, self._down, axis, mode, cval)
return out
def upfirdn(h, x, up=1, down=1, axis=-1, mode='constant', cval=0):
"""Upsample, FIR filter, and downsample.
Parameters
----------
h : array_like
1-D FIR (finite-impulse response) filter coefficients.
x : array_like
Input signal array.
up : int, optional
Upsampling rate. Default is 1.
down : int, optional
Downsampling rate. Default is 1.
axis : int, optional
The axis of the input data array along which to apply the
linear filter. The filter is applied to each subarray along
this axis. Default is -1.
mode : str, optional
The signal extension mode to use. The set
``{"constant", "symmetric", "reflect", "edge", "wrap"}`` correspond to
modes provided by `numpy.pad`. ``"smooth"`` implements a smooth
extension by extending based on the slope of the last 2 points at each
end of the array. ``"antireflect"`` and ``"antisymmetric"`` are
anti-symmetric versions of ``"reflect"`` and ``"symmetric"``. The mode
`"line"` extends the signal based on a linear trend defined by the
first and last points along the ``axis``.
.. versionadded:: 1.4.0
cval : float, optional
The constant value to use when ``mode == "constant"``.
.. versionadded:: 1.4.0
Returns
-------
y : ndarray
The output signal array. Dimensions will be the same as `x` except
for along `axis`, which will change size according to the `h`,
`up`, and `down` parameters.
Notes
-----
The algorithm is an implementation of the block diagram shown on page 129
of the Vaidyanathan text [1]_ (Figure 4.3-8d).
The direct approach of upsampling by factor of P with zero insertion,
FIR filtering of length ``N``, and downsampling by factor of Q is
O(N*Q) per output sample. The polyphase implementation used here is
O(N/P).
.. versionadded:: 0.18
References
----------
.. [1] P. P. Vaidyanathan, Multirate Systems and Filter Banks,
Prentice Hall, 1993.
Examples
--------
Simple operations:
>>> import numpy as np
>>> from scipy.signal import upfirdn
>>> upfirdn([1, 1, 1], [1, 1, 1]) # FIR filter
array([ 1., 2., 3., 2., 1.])
>>> upfirdn([1], [1, 2, 3], 3) # upsampling with zeros insertion
array([ 1., 0., 0., 2., 0., 0., 3.])
>>> upfirdn([1, 1, 1], [1, 2, 3], 3) # upsampling with sample-and-hold
array([ 1., 1., 1., 2., 2., 2., 3., 3., 3.])
>>> upfirdn([.5, 1, .5], [1, 1, 1], 2) # linear interpolation
array([ 0.5, 1. , 1. , 1. , 1. , 1. , 0.5])
>>> upfirdn([1], np.arange(10), 1, 3) # decimation by 3
array([ 0., 3., 6., 9.])
>>> upfirdn([.5, 1, .5], np.arange(10), 2, 3) # linear interp, rate 2/3
array([ 0. , 1. , 2.5, 4. , 5.5, 7. , 8.5])
Apply a single filter to multiple signals:
>>> x = np.reshape(np.arange(8), (4, 2))
>>> x
array([[0, 1],
[2, 3],
[4, 5],
[6, 7]])
Apply along the last dimension of ``x``:
>>> h = [1, 1]
>>> upfirdn(h, x, 2)
array([[ 0., 0., 1., 1.],
[ 2., 2., 3., 3.],
[ 4., 4., 5., 5.],
[ 6., 6., 7., 7.]])
Apply along the 0th dimension of ``x``:
>>> upfirdn(h, x, 2, axis=0)
array([[ 0., 1.],
[ 0., 1.],
[ 2., 3.],
[ 2., 3.],
[ 4., 5.],
[ 4., 5.],
[ 6., 7.],
[ 6., 7.]])
"""
xp = array_namespace(h, x)
x = np.asarray(x)
ufd = _UpFIRDn(h, x.dtype, up, down)
# This is equivalent to (but faster than) using np.apply_along_axis
return xp.asarray(ufd.apply_filter(x, axis, mode, cval))

View file

@ -0,0 +1,687 @@
# Author: Travis Oliphant
# 2003
#
# Feb. 2010: Updated by Warren Weckesser:
# Rewrote much of chirp()
# Added sweep_poly()
import numpy as np
from numpy import asarray, zeros, place, nan, mod, pi, extract, log, sqrt, \
exp, cos, sin, polyval, polyint
__all__ = ['sawtooth', 'square', 'gausspulse', 'chirp', 'sweep_poly',
'unit_impulse']
def sawtooth(t, width=1):
"""
Return a periodic sawtooth or triangle waveform.
The sawtooth waveform has a period ``2*pi``, rises from -1 to 1 on the
interval 0 to ``width*2*pi``, then drops from 1 to -1 on the interval
``width*2*pi`` to ``2*pi``. `width` must be in the interval [0, 1].
Note that this is not band-limited. It produces an infinite number
of harmonics, which are aliased back and forth across the frequency
spectrum.
Parameters
----------
t : array_like
Time.
width : array_like, optional
Width of the rising ramp as a proportion of the total cycle.
Default is 1, producing a rising ramp, while 0 produces a falling
ramp. `width` = 0.5 produces a triangle wave.
If an array, causes wave shape to change over time, and must be the
same length as t.
Returns
-------
y : ndarray
Output array containing the sawtooth waveform.
Examples
--------
A 5 Hz waveform sampled at 500 Hz for 1 second:
>>> import numpy as np
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> t = np.linspace(0, 1, 500)
>>> plt.plot(t, signal.sawtooth(2 * np.pi * 5 * t))
"""
t, w = asarray(t), asarray(width)
w = asarray(w + (t - t))
t = asarray(t + (w - w))
y = zeros(t.shape, dtype="d")
# width must be between 0 and 1 inclusive
mask1 = (w > 1) | (w < 0)
place(y, mask1, nan)
# take t modulo 2*pi
tmod = mod(t, 2 * pi)
# on the interval 0 to width*2*pi function is
# tmod / (pi*w) - 1
mask2 = (1 - mask1) & (tmod < w * 2 * pi)
tsub = extract(mask2, tmod)
wsub = extract(mask2, w)
place(y, mask2, tsub / (pi * wsub) - 1)
# on the interval width*2*pi to 2*pi function is
# (pi*(w+1)-tmod) / (pi*(1-w))
mask3 = (1 - mask1) & (1 - mask2)
tsub = extract(mask3, tmod)
wsub = extract(mask3, w)
place(y, mask3, (pi * (wsub + 1) - tsub) / (pi * (1 - wsub)))
return y
def square(t, duty=0.5):
"""
Return a periodic square-wave waveform.
The square wave has a period ``2*pi``, has value +1 from 0 to
``2*pi*duty`` and -1 from ``2*pi*duty`` to ``2*pi``. `duty` must be in
the interval [0,1].
Note that this is not band-limited. It produces an infinite number
of harmonics, which are aliased back and forth across the frequency
spectrum.
Parameters
----------
t : array_like
The input time array.
duty : array_like, optional
Duty cycle. Default is 0.5 (50% duty cycle).
If an array, causes wave shape to change over time, and must be the
same length as t.
Returns
-------
y : ndarray
Output array containing the square waveform.
Examples
--------
A 5 Hz waveform sampled at 500 Hz for 1 second:
>>> import numpy as np
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> t = np.linspace(0, 1, 500, endpoint=False)
>>> plt.plot(t, signal.square(2 * np.pi * 5 * t))
>>> plt.ylim(-2, 2)
A pulse-width modulated sine wave:
>>> plt.figure()
>>> sig = np.sin(2 * np.pi * t)
>>> pwm = signal.square(2 * np.pi * 30 * t, duty=(sig + 1)/2)
>>> plt.subplot(2, 1, 1)
>>> plt.plot(t, sig)
>>> plt.subplot(2, 1, 2)
>>> plt.plot(t, pwm)
>>> plt.ylim(-1.5, 1.5)
"""
t, w = asarray(t), asarray(duty)
w = asarray(w + (t - t))
t = asarray(t + (w - w))
y = zeros(t.shape, dtype="d")
# width must be between 0 and 1 inclusive
mask1 = (w > 1) | (w < 0)
place(y, mask1, nan)
# on the interval 0 to duty*2*pi function is 1
tmod = mod(t, 2 * pi)
mask2 = (1 - mask1) & (tmod < w * 2 * pi)
place(y, mask2, 1)
# on the interval duty*2*pi to 2*pi function is
# (pi*(w+1)-tmod) / (pi*(1-w))
mask3 = (1 - mask1) & (1 - mask2)
place(y, mask3, -1)
return y
def gausspulse(t, fc=1000, bw=0.5, bwr=-6, tpr=-60, retquad=False,
retenv=False):
"""
Return a Gaussian modulated sinusoid:
``exp(-a t^2) exp(1j*2*pi*fc*t).``
If `retquad` is True, then return the real and imaginary parts
(in-phase and quadrature).
If `retenv` is True, then return the envelope (unmodulated signal).
Otherwise, return the real part of the modulated sinusoid.
Parameters
----------
t : ndarray or the string 'cutoff'
Input array.
fc : float, optional
Center frequency (e.g. Hz). Default is 1000.
bw : float, optional
Fractional bandwidth in frequency domain of pulse (e.g. Hz).
Default is 0.5.
bwr : float, optional
Reference level at which fractional bandwidth is calculated (dB).
Default is -6.
tpr : float, optional
If `t` is 'cutoff', then the function returns the cutoff
time for when the pulse amplitude falls below `tpr` (in dB).
Default is -60.
retquad : bool, optional
If True, return the quadrature (imaginary) as well as the real part
of the signal. Default is False.
retenv : bool, optional
If True, return the envelope of the signal. Default is False.
Returns
-------
yI : ndarray
Real part of signal. Always returned.
yQ : ndarray
Imaginary part of signal. Only returned if `retquad` is True.
yenv : ndarray
Envelope of signal. Only returned if `retenv` is True.
Examples
--------
Plot real component, imaginary component, and envelope for a 5 Hz pulse,
sampled at 100 Hz for 2 seconds:
>>> import numpy as np
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> t = np.linspace(-1, 1, 2 * 100, endpoint=False)
>>> i, q, e = signal.gausspulse(t, fc=5, retquad=True, retenv=True)
>>> plt.plot(t, i, t, q, t, e, '--')
"""
if fc < 0:
raise ValueError(f"Center frequency (fc={fc:.2f}) must be >=0.")
if bw <= 0:
raise ValueError(f"Fractional bandwidth (bw={bw:.2f}) must be > 0.")
if bwr >= 0:
raise ValueError(f"Reference level for bandwidth (bwr={bwr:.2f}) "
"must be < 0 dB")
# exp(-a t^2) <-> sqrt(pi/a) exp(-pi^2/a * f^2) = g(f)
ref = pow(10.0, bwr / 20.0)
# fdel = fc*bw/2: g(fdel) = ref --- solve this for a
#
# pi^2/a * fc^2 * bw^2 /4=-log(ref)
a = -(pi * fc * bw) ** 2 / (4.0 * log(ref))
if isinstance(t, str):
if t == 'cutoff': # compute cut_off point
# Solve exp(-a tc**2) = tref for tc
# tc = sqrt(-log(tref) / a) where tref = 10^(tpr/20)
if tpr >= 0:
raise ValueError("Reference level for time cutoff must "
"be < 0 dB")
tref = pow(10.0, tpr / 20.0)
return sqrt(-log(tref) / a)
else:
raise ValueError("If `t` is a string, it must be 'cutoff'")
yenv = exp(-a * t * t)
yI = yenv * cos(2 * pi * fc * t)
yQ = yenv * sin(2 * pi * fc * t)
if not retquad and not retenv:
return yI
if not retquad and retenv:
return yI, yenv
if retquad and not retenv:
return yI, yQ
if retquad and retenv:
return yI, yQ, yenv
def chirp(t, f0, t1, f1, method='linear', phi=0, vertex_zero=True, *,
complex=False):
r"""Frequency-swept cosine generator.
In the following, 'Hz' should be interpreted as 'cycles per unit';
there is no requirement here that the unit is one second. The
important distinction is that the units of rotation are cycles, not
radians. Likewise, `t` could be a measurement of space instead of time.
Parameters
----------
t : array_like
Times at which to evaluate the waveform.
f0 : float
Frequency (e.g. Hz) at time t=0.
t1 : float
Time at which `f1` is specified.
f1 : float
Frequency (e.g. Hz) of the waveform at time `t1`.
method : {'linear', 'quadratic', 'logarithmic', 'hyperbolic'}, optional
Kind of frequency sweep. If not given, `linear` is assumed. See
Notes below for more details.
phi : float, optional
Phase offset, in degrees. Default is 0.
vertex_zero : bool, optional
This parameter is only used when `method` is 'quadratic'.
It determines whether the vertex of the parabola that is the graph
of the frequency is at t=0 or t=t1.
complex : bool, optional
This parameter creates a complex-valued analytic signal instead of a
real-valued signal. It allows the use of complex baseband (in communications
domain). Default is False.
.. versionadded:: 1.15.0
Returns
-------
y : ndarray
A numpy array containing the signal evaluated at `t` with the requested
time-varying frequency. More precisely, the function returns
``exp(1j*phase + 1j*(pi/180)*phi) if complex else cos(phase + (pi/180)*phi)``
where `phase` is the integral (from 0 to `t`) of ``2*pi*f(t)``.
The instantaneous frequency ``f(t)`` is defined below.
See Also
--------
sweep_poly
Notes
-----
There are four possible options for the parameter `method`, which have a (long)
standard form and some allowed abbreviations. The formulas for the instantaneous
frequency :math:`f(t)` of the generated signal are as follows:
1. Parameter `method` in ``('linear', 'lin', 'li')``:
.. math::
f(t) = f_0 + \beta\, t \quad\text{with}\quad
\beta = \frac{f_1 - f_0}{t_1}
Frequency :math:`f(t)` varies linearly over time with a constant rate
:math:`\beta`.
2. Parameter `method` in ``('quadratic', 'quad', 'q')``:
.. math::
f(t) =
\begin{cases}
f_0 + \beta\, t^2 & \text{if vertex_zero is True,}\\
f_1 + \beta\, (t_1 - t)^2 & \text{otherwise,}
\end{cases}
\quad\text{with}\quad
\beta = \frac{f_1 - f_0}{t_1^2}
The graph of the frequency f(t) is a parabola through :math:`(0, f_0)` and
:math:`(t_1, f_1)`. By default, the vertex of the parabola is at
:math:`(0, f_0)`. If `vertex_zero` is ``False``, then the vertex is at
:math:`(t_1, f_1)`.
To use a more general quadratic function, or an arbitrary
polynomial, use the function `scipy.signal.sweep_poly`.
3. Parameter `method` in ``('logarithmic', 'log', 'lo')``:
.. math::
f(t) = f_0 \left(\frac{f_1}{f_0}\right)^{t/t_1}
:math:`f_0` and :math:`f_1` must be nonzero and have the same sign.
This signal is also known as a geometric or exponential chirp.
4. Parameter `method` in ``('hyperbolic', 'hyp')``:
.. math::
f(t) = \frac{\alpha}{\beta\, t + \gamma} \quad\text{with}\quad
\alpha = f_0 f_1 t_1, \ \beta = f_0 - f_1, \ \gamma = f_1 t_1
:math:`f_0` and :math:`f_1` must be nonzero.
Examples
--------
For the first example, a linear chirp ranging from 6 Hz to 1 Hz over 10 seconds is
plotted:
>>> import numpy as np
>>> from matplotlib.pyplot import tight_layout
>>> from scipy.signal import chirp, square, ShortTimeFFT
>>> from scipy.signal.windows import gaussian
>>> import matplotlib.pyplot as plt
...
>>> N, T = 1000, 0.01 # number of samples and sampling interval for 10 s signal
>>> t = np.arange(N) * T # timestamps
...
>>> x_lin = chirp(t, f0=6, f1=1, t1=10, method='linear')
...
>>> fg0, ax0 = plt.subplots()
>>> ax0.set_title(r"Linear Chirp from $f(0)=6\,$Hz to $f(10)=1\,$Hz")
>>> ax0.set(xlabel="Time $t$ in Seconds", ylabel=r"Amplitude $x_\text{lin}(t)$")
>>> ax0.plot(t, x_lin)
>>> plt.show()
The following four plots each show the short-time Fourier transform of a chirp
ranging from 45 Hz to 5 Hz with different values for the parameter `method`
(and `vertex_zero`):
>>> x_qu0 = chirp(t, f0=45, f1=5, t1=N*T, method='quadratic', vertex_zero=True)
>>> x_qu1 = chirp(t, f0=45, f1=5, t1=N*T, method='quadratic', vertex_zero=False)
>>> x_log = chirp(t, f0=45, f1=5, t1=N*T, method='logarithmic')
>>> x_hyp = chirp(t, f0=45, f1=5, t1=N*T, method='hyperbolic')
...
>>> win = gaussian(50, std=12, sym=True)
>>> SFT = ShortTimeFFT(win, hop=2, fs=1/T, mfft=800, scale_to='magnitude')
>>> ts = ("'quadratic', vertex_zero=True", "'quadratic', vertex_zero=False",
... "'logarithmic'", "'hyperbolic'")
>>> fg1, ax1s = plt.subplots(2, 2, sharex='all', sharey='all',
... figsize=(6, 5), layout="constrained")
>>> for x_, ax_, t_ in zip([x_qu0, x_qu1, x_log, x_hyp], ax1s.ravel(), ts):
... aSx = abs(SFT.stft(x_))
... im_ = ax_.imshow(aSx, origin='lower', aspect='auto', extent=SFT.extent(N),
... cmap='plasma')
... ax_.set_title(t_)
... if t_ == "'hyperbolic'":
... fg1.colorbar(im_, ax=ax1s, label='Magnitude $|S_z(t,f)|$')
>>> _ = fg1.supxlabel("Time $t$ in Seconds") # `_ =` is needed to pass doctests
>>> _ = fg1.supylabel("Frequency $f$ in Hertz")
>>> plt.show()
Finally, the short-time Fourier transform of a complex-valued linear chirp
ranging from -30 Hz to 30 Hz is depicted:
>>> z_lin = chirp(t, f0=-30, f1=30, t1=N*T, method="linear", complex=True)
>>> SFT.fft_mode = 'centered' # needed to work with complex signals
>>> aSz = abs(SFT.stft(z_lin))
...
>>> fg2, ax2 = plt.subplots()
>>> ax2.set_title(r"Linear Chirp from $-30\,$Hz to $30\,$Hz")
>>> ax2.set(xlabel="Time $t$ in Seconds", ylabel="Frequency $f$ in Hertz")
>>> im2 = ax2.imshow(aSz, origin='lower', aspect='auto',
... extent=SFT.extent(N), cmap='viridis')
>>> fg2.colorbar(im2, label='Magnitude $|S_z(t,f)|$')
>>> plt.show()
Note that using negative frequencies makes only sense with complex-valued signals.
Furthermore, the magnitude of the complex exponential function is one whereas the
magnitude of the real-valued cosine function is only 1/2.
"""
# 'phase' is computed in _chirp_phase, to make testing easier.
phase = _chirp_phase(t, f0, t1, f1, method, vertex_zero) + np.deg2rad(phi)
return np.exp(1j*phase) if complex else np.cos(phase)
def _chirp_phase(t, f0, t1, f1, method='linear', vertex_zero=True):
"""
Calculate the phase used by `chirp` to generate its output.
See `chirp` for a description of the arguments.
"""
t = asarray(t)
f0 = float(f0)
t1 = float(t1)
f1 = float(f1)
if method in ['linear', 'lin', 'li']:
beta = (f1 - f0) / t1
phase = 2 * pi * (f0 * t + 0.5 * beta * t * t)
elif method in ['quadratic', 'quad', 'q']:
beta = (f1 - f0) / (t1 ** 2)
if vertex_zero:
phase = 2 * pi * (f0 * t + beta * t ** 3 / 3)
else:
phase = 2 * pi * (f1 * t + beta * ((t1 - t) ** 3 - t1 ** 3) / 3)
elif method in ['logarithmic', 'log', 'lo']:
if f0 * f1 <= 0.0:
raise ValueError("For a logarithmic chirp, f0 and f1 must be "
"nonzero and have the same sign.")
if f0 == f1:
phase = 2 * pi * f0 * t
else:
beta = t1 / log(f1 / f0)
phase = 2 * pi * beta * f0 * (pow(f1 / f0, t / t1) - 1.0)
elif method in ['hyperbolic', 'hyp']:
if f0 == 0 or f1 == 0:
raise ValueError("For a hyperbolic chirp, f0 and f1 must be "
"nonzero.")
if f0 == f1:
# Degenerate case: constant frequency.
phase = 2 * pi * f0 * t
else:
# Singular point: the instantaneous frequency blows up
# when t == sing.
sing = -f1 * t1 / (f0 - f1)
phase = 2 * pi * (-sing * f0) * log(np.abs(1 - t/sing))
else:
raise ValueError("method must be 'linear', 'quadratic', 'logarithmic', "
f"or 'hyperbolic', but a value of {method!r} was given.")
return phase
def sweep_poly(t, poly, phi=0):
"""
Frequency-swept cosine generator, with a time-dependent frequency.
This function generates a sinusoidal function whose instantaneous
frequency varies with time. The frequency at time `t` is given by
the polynomial `poly`.
Parameters
----------
t : ndarray
Times at which to evaluate the waveform.
poly : 1-D array_like or instance of numpy.poly1d
The desired frequency expressed as a polynomial. If `poly` is
a list or ndarray of length n, then the elements of `poly` are
the coefficients of the polynomial, and the instantaneous
frequency is
``f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... + poly[n-1]``
If `poly` is an instance of numpy.poly1d, then the
instantaneous frequency is
``f(t) = poly(t)``
phi : float, optional
Phase offset, in degrees, Default: 0.
Returns
-------
sweep_poly : ndarray
A numpy array containing the signal evaluated at `t` with the
requested time-varying frequency. More precisely, the function
returns ``cos(phase + (pi/180)*phi)``, where `phase` is the integral
(from 0 to t) of ``2 * pi * f(t)``; ``f(t)`` is defined above.
See Also
--------
chirp
Notes
-----
.. versionadded:: 0.8.0
If `poly` is a list or ndarray of length `n`, then the elements of
`poly` are the coefficients of the polynomial, and the instantaneous
frequency is:
``f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... + poly[n-1]``
If `poly` is an instance of `numpy.poly1d`, then the instantaneous
frequency is:
``f(t) = poly(t)``
Finally, the output `s` is:
``cos(phase + (pi/180)*phi)``
where `phase` is the integral from 0 to `t` of ``2 * pi * f(t)``,
``f(t)`` as defined above.
Examples
--------
Compute the waveform with instantaneous frequency::
f(t) = 0.025*t**3 - 0.36*t**2 + 1.25*t + 2
over the interval 0 <= t <= 10.
>>> import numpy as np
>>> from scipy.signal import sweep_poly
>>> p = np.poly1d([0.025, -0.36, 1.25, 2.0])
>>> t = np.linspace(0, 10, 5001)
>>> w = sweep_poly(t, p)
Plot it:
>>> import matplotlib.pyplot as plt
>>> plt.subplot(2, 1, 1)
>>> plt.plot(t, w)
>>> plt.title("Sweep Poly\\nwith frequency " +
... "$f(t) = 0.025t^3 - 0.36t^2 + 1.25t + 2$")
>>> plt.subplot(2, 1, 2)
>>> plt.plot(t, p(t), 'r', label='f(t)')
>>> plt.legend()
>>> plt.xlabel('t')
>>> plt.tight_layout()
>>> plt.show()
"""
# 'phase' is computed in _sweep_poly_phase, to make testing easier.
phase = _sweep_poly_phase(t, poly)
# Convert to radians.
phi *= pi / 180
return cos(phase + phi)
def _sweep_poly_phase(t, poly):
"""
Calculate the phase used by sweep_poly to generate its output.
See `sweep_poly` for a description of the arguments.
"""
# polyint handles lists, ndarrays and instances of poly1d automatically.
intpoly = polyint(poly)
phase = 2 * pi * polyval(intpoly, t)
return phase
def unit_impulse(shape, idx=None, dtype=float):
r"""
Unit impulse signal (discrete delta function) or unit basis vector.
Parameters
----------
shape : int or tuple of int
Number of samples in the output (1-D), or a tuple that represents the
shape of the output (N-D).
idx : None or int or tuple of int or 'mid', optional
Index at which the value is 1. If None, defaults to the 0th element.
If ``idx='mid'``, the impulse will be centered at ``shape // 2`` in
all dimensions. If an int, the impulse will be at `idx` in all
dimensions.
dtype : data-type, optional
The desired data-type for the array, e.g., ``numpy.int8``. Default is
``numpy.float64``.
Returns
-------
y : ndarray
Output array containing an impulse signal.
Notes
-----
In digital signal processing literature the unit impulse signal is often
represented by the Kronecker delta. [1]_ I.e., a signal :math:`u_k[n]`,
which is zero everywhere except being one at the :math:`k`-th sample,
can be expressed as
.. math::
u_k[n] = \delta[n-k] \equiv \delta_{n,k}\ .
Furthermore, the unit impulse is frequently interpreted as the discrete-time
version of the continuous-time Dirac distribution. [2]_
References
----------
.. [1] "Kronecker delta", *Wikipedia*,
https://en.wikipedia.org/wiki/Kronecker_delta#Digital_signal_processing
.. [2] "Dirac delta function" *Wikipedia*,
https://en.wikipedia.org/wiki/Dirac_delta_function#Relationship_to_the_Kronecker_delta
.. versionadded:: 0.19.0
Examples
--------
An impulse at the 0th element (:math:`\\delta[n]`):
>>> from scipy import signal
>>> signal.unit_impulse(8)
array([ 1., 0., 0., 0., 0., 0., 0., 0.])
Impulse offset by 2 samples (:math:`\\delta[n-2]`):
>>> signal.unit_impulse(7, 2)
array([ 0., 0., 1., 0., 0., 0., 0.])
2-dimensional impulse, centered:
>>> signal.unit_impulse((3, 3), 'mid')
array([[ 0., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 0.]])
Impulse at (2, 2), using broadcasting:
>>> signal.unit_impulse((4, 4), 2)
array([[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 1., 0.],
[ 0., 0., 0., 0.]])
Plot the impulse response of a 4th-order Butterworth lowpass filter:
>>> imp = signal.unit_impulse(100, 'mid')
>>> b, a = signal.butter(4, 0.2)
>>> response = signal.lfilter(b, a, imp)
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> plt.plot(np.arange(-50, 50), imp)
>>> plt.plot(np.arange(-50, 50), response)
>>> plt.margins(0.1, 0.1)
>>> plt.xlabel('Time [samples]')
>>> plt.ylabel('Amplitude')
>>> plt.grid(True)
>>> plt.show()
"""
out = zeros(shape, dtype)
shape = np.atleast_1d(shape)
if idx is None:
idx = (0,) * len(shape)
elif idx == 'mid':
idx = tuple(shape // 2)
elif not hasattr(idx, "__iter__"):
idx = (idx,) * len(shape)
out[idx] = 1
return out

View file

@ -0,0 +1,29 @@
import numpy as np
from scipy.signal._signaltools import convolve
def _ricker(points, a):
A = 2 / (np.sqrt(3 * a) * (np.pi**0.25))
wsq = a**2
vec = np.arange(0, points) - (points - 1.0) / 2
xsq = vec**2
mod = (1 - xsq / wsq)
gauss = np.exp(-xsq / (2 * wsq))
total = A * mod * gauss
return total
def _cwt(data, wavelet, widths, dtype=None, **kwargs):
# Determine output type
if dtype is None:
if np.asarray(wavelet(1, widths[0], **kwargs)).dtype.char in 'FDG':
dtype = np.complex128
else:
dtype = np.float64
output = np.empty((len(widths), len(data)), dtype=dtype)
for ind, width in enumerate(widths):
N = np.min([10 * width, len(data)])
wavelet_data = np.conj(wavelet(N, width, **kwargs)[::-1])
output[ind] = convolve(data, wavelet_data, mode='same')
return output

View file

@ -0,0 +1,21 @@
# This file is not meant for public use and will be removed in SciPy v2.0.0.
# Use the `scipy.signal` namespace for importing the functions
# included below.
from scipy._lib.deprecation import _sub_module_deprecation
__all__ = [ # noqa: F822
'spline_filter', 'gauss_spline',
'cspline1d', 'qspline1d', 'cspline1d_eval', 'qspline1d_eval',
'cspline2d', 'sepfir2d'
]
def __dir__():
return __all__
def __getattr__(name):
return _sub_module_deprecation(sub_package="signal", module="bsplines",
private_modules=["_spline_filters"], all=__all__,
attribute=name)

View file

@ -0,0 +1,28 @@
# This file is not meant for public use and will be removed in SciPy v2.0.0.
# Use the `scipy.signal` namespace for importing the functions
# included below.
from scipy._lib.deprecation import _sub_module_deprecation
__all__ = [ # noqa: F822
'findfreqs', 'freqs', 'freqz', 'tf2zpk', 'zpk2tf', 'normalize',
'lp2lp', 'lp2hp', 'lp2bp', 'lp2bs', 'bilinear', 'iirdesign',
'iirfilter', 'butter', 'cheby1', 'cheby2', 'ellip', 'bessel',
'band_stop_obj', 'buttord', 'cheb1ord', 'cheb2ord', 'ellipord',
'buttap', 'cheb1ap', 'cheb2ap', 'ellipap', 'besselap',
'BadCoefficients', 'freqs_zpk', 'freqz_zpk',
'tf2sos', 'sos2tf', 'zpk2sos', 'sos2zpk', 'group_delay',
'sosfreqz', 'freqz_sos', 'iirnotch', 'iirpeak', 'bilinear_zpk',
'lp2lp_zpk', 'lp2hp_zpk', 'lp2bp_zpk', 'lp2bs_zpk',
'gammatone', 'iircomb',
]
def __dir__():
return __all__
def __getattr__(name):
return _sub_module_deprecation(sub_package="signal", module="filter_design",
private_modules=["_filter_design"], all=__all__,
attribute=name)

View file

@ -0,0 +1,21 @@
# This file is not meant for public use and will be removed in SciPy v2.0.0.
# Use the `scipy.signal` namespace for importing the functions
# included below.
from scipy._lib.deprecation import _sub_module_deprecation
__all__ = [ # noqa: F822
'kaiser_beta', 'kaiser_atten', 'kaiserord',
'firwin', 'firwin2', 'remez', 'firls', 'minimum_phase',
'firwin_2d',
]
def __dir__():
return __all__
def __getattr__(name):
return _sub_module_deprecation(sub_package="signal", module="fir_filter_design",
private_modules=["_fir_filter_design"], all=__all__,
attribute=name)

View file

@ -0,0 +1,20 @@
# This file is not meant for public use and will be removed in SciPy v2.0.0.
# Use the `scipy.signal` namespace for importing the functions
# included below.
from scipy._lib.deprecation import _sub_module_deprecation
__all__ = [ # noqa: F822
'tf2ss', 'abcd_normalize', 'ss2tf', 'zpk2ss', 'ss2zpk',
'cont2discrete', 'tf2zpk', 'zpk2tf', 'normalize'
]
def __dir__():
return __all__
def __getattr__(name):
return _sub_module_deprecation(sub_package="signal", module="lti_conversion",
private_modules=["_lti_conversion"], all=__all__,
attribute=name)

View file

@ -0,0 +1,25 @@
# This file is not meant for public use and will be removed in SciPy v2.0.0.
# Use the `scipy.signal` namespace for importing the functions
# included below.
from scipy._lib.deprecation import _sub_module_deprecation
__all__ = [ # noqa: F822
'lti', 'dlti', 'TransferFunction', 'ZerosPolesGain', 'StateSpace',
'lsim', 'impulse', 'step', 'bode',
'freqresp', 'place_poles', 'dlsim', 'dstep', 'dimpulse',
'dfreqresp', 'dbode',
'tf2zpk', 'zpk2tf', 'normalize', 'freqs',
'freqz', 'freqs_zpk', 'freqz_zpk', 'tf2ss', 'abcd_normalize',
'ss2tf', 'zpk2ss', 'ss2zpk', 'cont2discrete',
]
def __dir__():
return __all__
def __getattr__(name):
return _sub_module_deprecation(sub_package="signal", module="ltisys",
private_modules=["_ltisys"], all=__all__,
attribute=name)

View file

@ -0,0 +1,27 @@
# This file is not meant for public use and will be removed in SciPy v2.0.0.
# Use the `scipy.signal` namespace for importing the functions
# included below.
from scipy._lib.deprecation import _sub_module_deprecation
__all__ = [ # noqa: F822
'correlate', 'correlation_lags', 'correlate2d',
'convolve', 'convolve2d', 'fftconvolve', 'oaconvolve',
'order_filter', 'medfilt', 'medfilt2d', 'wiener', 'lfilter',
'lfiltic', 'sosfilt', 'deconvolve', 'hilbert', 'hilbert2',
'unique_roots', 'invres', 'invresz', 'residue',
'residuez', 'resample', 'resample_poly', 'detrend',
'lfilter_zi', 'sosfilt_zi', 'sosfiltfilt', 'choose_conv_method',
'filtfilt', 'decimate', 'vectorstrength',
'dlti', 'upfirdn', 'get_window', 'cheby1', 'firwin'
]
def __dir__():
return __all__
def __getattr__(name):
return _sub_module_deprecation(sub_package="signal", module="signaltools",
private_modules=["_signaltools"], all=__all__,
attribute=name)

View file

@ -0,0 +1,21 @@
# This file is not meant for public use and will be removed in SciPy v2.0.0.
# Use the `scipy.signal` namespace for importing the functions
# included below.
from scipy._lib.deprecation import _sub_module_deprecation
__all__ = [ # noqa: F822
'periodogram', 'welch', 'lombscargle', 'csd', 'coherence',
'spectrogram', 'stft', 'istft', 'check_COLA', 'check_NOLA',
'get_window',
]
def __dir__():
return __all__
def __getattr__(name):
return _sub_module_deprecation(sub_package="signal", module="spectral",
private_modules=["_spectral_py"], all=__all__,
attribute=name)

View file

@ -0,0 +1,18 @@
# This file is not meant for public use and will be removed in the future
# versions of SciPy. Use the `scipy.signal` namespace for importing the
# functions included below.
from scipy._lib.deprecation import _sub_module_deprecation
__all__ = ['sepfir2d'] # noqa: F822
def __dir__():
return __all__
def __getattr__(name):
return _sub_module_deprecation(sub_package="signal", module="spline",
private_modules=["_spline"], all=__all__,
attribute=name)

View file

@ -0,0 +1,311 @@
"""Helpers to utilize existing stft / istft tests for testing `ShortTimeFFT`.
This module provides the functions stft_compare() and istft_compare(), which,
compares the output between the existing (i)stft() and the shortTimeFFT based
_(i)stft_wrapper() implementations in this module.
For testing add the following imports to the file ``tests/test_spectral.py``::
from ._scipy_spectral_test_shim import stft_compare as stft
from ._scipy_spectral_test_shim import istft_compare as istft
and remove the existing imports of stft and istft.
The idea of these wrappers is not to provide a backward-compatible interface
but to demonstrate that the ShortTimeFFT implementation is at least as capable
as the existing one and delivers comparable results. Furthermore, the
wrappers highlight the different philosophies of the implementations,
especially in the border handling.
"""
import platform
from typing import cast, Literal
import numpy as np
from numpy.testing import assert_allclose
from scipy.signal import ShortTimeFFT
from scipy.signal import get_window, stft, istft
from scipy.signal._arraytools import const_ext, even_ext, odd_ext, zero_ext
from scipy.signal._short_time_fft import FFT_MODE_TYPE
from scipy.signal._spectral_py import _triage_segments
def _stft_wrapper(x, fs=1.0, window='hann', nperseg=256, noverlap=None,
nfft=None, detrend=False, return_onesided=True,
boundary='zeros', padded=True, axis=-1, scaling='spectrum'):
"""Wrapper for the SciPy `stft()` function based on `ShortTimeFFT` for
unit testing.
Handling the boundary and padding is where `ShortTimeFFT` and `stft()`
differ in behavior. Parts of `_spectral_helper()` were copied to mimic
the` stft()` behavior.
This function is meant to be solely used by `stft_compare()`.
"""
if scaling not in ('psd', 'spectrum'): # same errors as in original stft:
raise ValueError(f"Parameter {scaling=} not in ['spectrum', 'psd']!")
# The following lines are taken from the original _spectral_helper():
boundary_funcs = {'even': even_ext,
'odd': odd_ext,
'constant': const_ext,
'zeros': zero_ext,
None: None}
if boundary not in boundary_funcs:
raise ValueError(f"Unknown boundary option '{boundary}', must be one" +
f" of: {list(boundary_funcs.keys())}")
if x.size == 0:
return np.empty(x.shape), np.empty(x.shape), np.empty(x.shape)
if nperseg is not None: # if specified by user
nperseg = int(nperseg)
if nperseg < 1:
raise ValueError('nperseg must be a positive integer')
# parse window; if array like, then set nperseg = win.shape
win, nperseg = _triage_segments(window, nperseg,
input_length=x.shape[axis])
if nfft is None:
nfft = nperseg
elif nfft < nperseg:
raise ValueError('nfft must be greater than or equal to nperseg.')
else:
nfft = int(nfft)
if noverlap is None:
noverlap = nperseg//2
else:
noverlap = int(noverlap)
if noverlap >= nperseg:
raise ValueError('noverlap must be less than nperseg.')
nstep = nperseg - noverlap
n = x.shape[axis]
# Padding occurs after boundary extension, so that the extended signal ends
# in zeros, instead of introducing an impulse at the end.
# I.e. if x = [..., 3, 2]
# extend then pad -> [..., 3, 2, 2, 3, 0, 0, 0]
# pad then extend -> [..., 3, 2, 0, 0, 0, 2, 3]
if boundary is not None:
ext_func = boundary_funcs[boundary]
# Extend by nperseg//2 in front and back:
x = ext_func(x, nperseg//2, axis=axis)
if padded:
# Pad to integer number of windowed segments
# I.e make x.shape[-1] = nperseg + (nseg-1)*nstep, with integer nseg
x = np.moveaxis(x, axis, -1)
# This is an edge case where shortTimeFFT returns one more time slice
# than the Scipy stft() shorten to remove last time slice:
if n % 2 == 1 and nperseg % 2 == 1 and noverlap % 2 == 1:
x = x[..., : -1]
nadd = (-(x.shape[-1]-nperseg) % nstep) % nperseg
zeros_shape = list(x.shape[:-1]) + [nadd]
x = np.concatenate((x, np.zeros(zeros_shape)), axis=-1)
x = np.moveaxis(x, -1, axis)
# ... end original _spectral_helper() code.
scale_to = {'spectrum': 'magnitude', 'psd': 'psd'}[scaling]
if np.iscomplexobj(x) and return_onesided:
return_onesided = False
# using cast() to make mypy happy:
fft_mode = cast(FFT_MODE_TYPE, 'onesided' if return_onesided else 'twosided')
ST = ShortTimeFFT(win, nstep, fs, fft_mode=fft_mode, mfft=nfft,
scale_to=scale_to, phase_shift=None)
k_off = nperseg // 2
p0 = 0 # ST.lower_border_end[1] + 1
nn = x.shape[axis] if padded else n+k_off+1
# number of frames akin to legacy stft computation
p1 = (x.shape[axis] - nperseg) // nstep + 1
detr = None if detrend is False else detrend
Sxx = ST.stft_detrend(x, detr, p0, p1, k_offset=k_off, axis=axis)
t = ST.t(nn, 0, p1 - p0, k_offset=0 if boundary is not None else k_off)
if x.dtype in (np.float32, np.complex64):
Sxx = Sxx.astype(np.complex64)
return ST.f, t, Sxx
def _istft_wrapper(Zxx, fs=1.0, window='hann', nperseg=None, noverlap=None,
nfft=None, input_onesided=True, boundary=True, time_axis=-1,
freq_axis=-2, scaling='spectrum') -> \
tuple[np.ndarray, np.ndarray, tuple[int, int]]:
"""Wrapper for the SciPy `istft()` function based on `ShortTimeFFT` for
unit testing.
Note that only option handling is implemented as far as to handle the unit
tests. E.g., the case ``nperseg=None`` is not handled.
This function is meant to be solely used by `istft_compare()`.
"""
# *** Lines are taken from _spectral_py.istft() ***:
if Zxx.ndim < 2:
raise ValueError('Input stft must be at least 2d!')
if freq_axis == time_axis:
raise ValueError('Must specify differing time and frequency axes!')
nseg = Zxx.shape[time_axis]
if input_onesided:
# Assume even segment length
n_default = 2*(Zxx.shape[freq_axis] - 1)
else:
n_default = Zxx.shape[freq_axis]
# Check windowing parameters
if nperseg is None:
nperseg = n_default
else:
nperseg = int(nperseg)
if nperseg < 1:
raise ValueError('nperseg must be a positive integer')
if nfft is None:
if input_onesided and (nperseg == n_default + 1):
# Odd nperseg, no FFT padding
nfft = nperseg
else:
nfft = n_default
elif nfft < nperseg:
raise ValueError('nfft must be greater than or equal to nperseg.')
else:
nfft = int(nfft)
if noverlap is None:
noverlap = nperseg//2
else:
noverlap = int(noverlap)
if noverlap >= nperseg:
raise ValueError('noverlap must be less than nperseg.')
nstep = nperseg - noverlap
# Get window as array
if isinstance(window, str) or type(window) is tuple:
win = get_window(window, nperseg)
else:
win = np.asarray(window)
if len(win.shape) != 1:
raise ValueError('window must be 1-D')
if win.shape[0] != nperseg:
raise ValueError(f'window must have length of {nperseg}')
outputlength = nperseg + (nseg-1)*nstep
# *** End block of: Taken from _spectral_py.istft() ***
# Using cast() to make mypy happy:
fft_mode = cast(FFT_MODE_TYPE, 'onesided' if input_onesided else 'twosided')
scale_to = cast(Literal['magnitude', 'psd'],
{'spectrum': 'magnitude', 'psd': 'psd'}[scaling])
ST = ShortTimeFFT(win, nstep, fs, fft_mode=fft_mode, mfft=nfft,
scale_to=scale_to, phase_shift=None)
if boundary:
j = nperseg if nperseg % 2 == 0 else nperseg - 1
k0 = ST.k_min + nperseg // 2
k1 = outputlength - j + k0
else:
raise NotImplementedError("boundary=False does not make sense with" +
"ShortTimeFFT.istft()!")
x = ST.istft(Zxx, k0=k0, k1=k1, f_axis=freq_axis, t_axis=time_axis)
t = np.arange(k1 - k0) * ST.T
k_hi = ST.upper_border_begin(k1 - k0)[0]
# using cast() to make mypy happy:
return t, x, (ST.lower_border_end[0], k_hi)
def stft_compare(x, fs=1.0, window='hann', nperseg=256, noverlap=None,
nfft=None, detrend=False, return_onesided=True,
boundary='zeros', padded=True, axis=-1, scaling='spectrum'):
"""Assert that the results from the existing `stft()` and `_stft_wrapper()`
are close to each other.
For comparing the STFT values an absolute tolerance of the floating point
resolution was added to circumvent problems with the following tests:
* For float32 the tolerances are much higher in
TestSTFT.test_roundtrip_float32()).
* The TestSTFT.test_roundtrip_scaling() has a high relative deviation.
Interestingly this did not appear in Scipy 1.9.1 but only in the current
development version.
"""
kw = dict(x=x, fs=fs, window=window, nperseg=nperseg, noverlap=noverlap,
nfft=nfft, detrend=detrend, return_onesided=return_onesided,
boundary=boundary, padded=padded, axis=axis, scaling=scaling)
f, t, Zxx = stft(**kw)
f_wrapper, t_wrapper, Zxx_wrapper = _stft_wrapper(**kw)
e_msg_part = " of `stft_wrapper()` differ from `stft()`."
assert_allclose(f_wrapper, f, err_msg=f"Frequencies {e_msg_part}")
assert_allclose(t_wrapper, t, err_msg=f"Time slices {e_msg_part}")
# Adapted tolerances to account for:
atol = np.finfo(Zxx.dtype).resolution * 2
assert_allclose(Zxx_wrapper, Zxx, atol=atol,
err_msg=f"STFT values {e_msg_part}")
return f, t, Zxx
def istft_compare(Zxx, fs=1.0, window='hann', nperseg=None, noverlap=None,
nfft=None, input_onesided=True, boundary=True, time_axis=-1,
freq_axis=-2, scaling='spectrum'):
"""Assert that the results from the existing `istft()` and
`_istft_wrapper()` are close to each other.
Quirks:
* If ``boundary=False`` the comparison is skipped, since it does not
make sense with ShortTimeFFT.istft(). Only used in test
TestSTFT.test_roundtrip_boundary_extension().
* If ShortTimeFFT.istft() decides the STFT is not invertible, the
comparison is skipped, since istft() only emits a warning and does not
return a correct result. Only used in
ShortTimeFFT.test_roundtrip_not_nola().
* For comparing the signals an absolute tolerance of the floating point
resolution was added to account for the low accuracy of float32 (Occurs
only in TestSTFT.test_roundtrip_float32()).
"""
kw = dict(Zxx=Zxx, fs=fs, window=window, nperseg=nperseg,
noverlap=noverlap, nfft=nfft, input_onesided=input_onesided,
boundary=boundary, time_axis=time_axis, freq_axis=freq_axis,
scaling=scaling)
t, x = istft(**kw)
if not boundary: # skip test_roundtrip_boundary_extension():
return t, x # _istft_wrapper does() not implement this case
try: # if inversion fails, istft() only emits a warning:
t_wrapper, x_wrapper, (k_lo, k_hi) = _istft_wrapper(**kw)
except ValueError as v: # Do nothing if inversion fails:
if v.args[0] == "Short-time Fourier Transform not invertible!":
return t, x
raise v
e_msg_part = " of `istft_wrapper()` differ from `istft()`"
assert_allclose(t, t_wrapper, err_msg=f"Sample times {e_msg_part}")
# Adapted tolerances to account for resolution loss:
atol = np.finfo(x.dtype).resolution*2 # instead of default atol = 0
rtol = 1e-7 # default for np.allclose()
# Relax atol on 32-Bit platforms a bit to pass CI tests.
# - Not clear why there are discrepancies (in the FFT maybe?)
# - Not sure what changed on 'i686' since earlier on those test passed
if x.dtype == np.float32 and platform.machine() == 'i686':
# float32 gets only used by TestSTFT.test_roundtrip_float32() so
# we are using the tolerances from there to circumvent CI problems
atol, rtol = 1e-4, 1e-5
elif platform.machine() in ('aarch64', 'i386', 'i686'):
atol = max(atol, 1e-12) # 2e-15 seems too tight for 32-Bit platforms
assert_allclose(x_wrapper[k_lo:k_hi], x[k_lo:k_hi], atol=atol, rtol=rtol,
err_msg=f"Signal values {e_msg_part}")
return t, x

View file

@ -0,0 +1,122 @@
"""
Some signal functions implemented using mpmath.
"""
try:
import mpmath
except ImportError:
mpmath = None
def _prod(seq):
"""Returns the product of the elements in the sequence `seq`."""
p = 1
for elem in seq:
p *= elem
return p
def _relative_degree(z, p):
"""
Return relative degree of transfer function from zeros and poles.
This is simply len(p) - len(z), which must be nonnegative.
A ValueError is raised if len(p) < len(z).
"""
degree = len(p) - len(z)
if degree < 0:
raise ValueError("Improper transfer function. "
"Must have at least as many poles as zeros.")
return degree
def _zpkbilinear(z, p, k, fs):
"""Bilinear transformation to convert a filter from analog to digital."""
degree = _relative_degree(z, p)
fs2 = 2*fs
# Bilinear transform the poles and zeros
z_z = [(fs2 + z1) / (fs2 - z1) for z1 in z]
p_z = [(fs2 + p1) / (fs2 - p1) for p1 in p]
# Any zeros that were at infinity get moved to the Nyquist frequency
z_z.extend([-1] * degree)
# Compensate for gain change
numer = _prod(fs2 - z1 for z1 in z)
denom = _prod(fs2 - p1 for p1 in p)
k_z = k * numer / denom
return z_z, p_z, k_z.real
def _zpklp2lp(z, p, k, wo=1):
"""Transform a lowpass filter to a different cutoff frequency."""
degree = _relative_degree(z, p)
# Scale all points radially from origin to shift cutoff frequency
z_lp = [wo * z1 for z1 in z]
p_lp = [wo * p1 for p1 in p]
# Each shifted pole decreases gain by wo, each shifted zero increases it.
# Cancel out the net change to keep overall gain the same
k_lp = k * wo**degree
return z_lp, p_lp, k_lp
def _butter_analog_poles(n):
"""
Poles of an analog Butterworth lowpass filter.
This is the same calculation as scipy.signal.buttap(n) or
scipy.signal.butter(n, 1, analog=True, output='zpk'), but mpmath is used,
and only the poles are returned.
"""
poles = [-mpmath.exp(1j*mpmath.pi*k/(2*n)) for k in range(-n+1, n, 2)]
return poles
def butter_lp(n, Wn):
"""
Lowpass Butterworth digital filter design.
This computes the same result as scipy.signal.butter(n, Wn, output='zpk'),
but it uses mpmath, and the results are returned in lists instead of NumPy
arrays.
"""
zeros = []
poles = _butter_analog_poles(n)
k = 1
fs = 2
warped = 2 * fs * mpmath.tan(mpmath.pi * Wn / fs)
z, p, k = _zpklp2lp(zeros, poles, k, wo=warped)
z, p, k = _zpkbilinear(z, p, k, fs=fs)
return z, p, k
def zpkfreqz(z, p, k, worN=None):
"""
Frequency response of a filter in zpk format, using mpmath.
This is the same calculation as scipy.signal.freqz, but the input is in
zpk format, the calculation is performed using mpath, and the results are
returned in lists instead of NumPy arrays.
"""
if worN is None or isinstance(worN, int):
N = worN or 512
ws = [mpmath.pi * mpmath.mpf(j) / N for j in range(N)]
else:
ws = worN
h = []
for wk in ws:
zm1 = mpmath.exp(1j * wk)
numer = _prod([zm1 - t for t in z])
denom = _prod([zm1 - t for t in p])
hk = k * numer / denom
h.append(hk)
return ws, h

View file

@ -0,0 +1,111 @@
import numpy as np
from scipy._lib._array_api import xp_assert_equal
from pytest import raises as assert_raises
from scipy.signal._arraytools import (axis_slice, axis_reverse,
odd_ext, even_ext, const_ext, zero_ext)
class TestArrayTools:
def test_axis_slice(self):
a = np.arange(12).reshape(3, 4)
s = axis_slice(a, start=0, stop=1, axis=0)
xp_assert_equal(s, a[0:1, :])
s = axis_slice(a, start=-1, axis=0)
xp_assert_equal(s, a[-1:, :])
s = axis_slice(a, start=0, stop=1, axis=1)
xp_assert_equal(s, a[:, 0:1])
s = axis_slice(a, start=-1, axis=1)
xp_assert_equal(s, a[:, -1:])
s = axis_slice(a, start=0, step=2, axis=0)
xp_assert_equal(s, a[::2, :])
s = axis_slice(a, start=0, step=2, axis=1)
xp_assert_equal(s, a[:, ::2])
def test_axis_reverse(self):
a = np.arange(12).reshape(3, 4)
r = axis_reverse(a, axis=0)
xp_assert_equal(r, a[::-1, :])
r = axis_reverse(a, axis=1)
xp_assert_equal(r, a[:, ::-1])
def test_odd_ext(self):
a = np.array([[1, 2, 3, 4, 5],
[9, 8, 7, 6, 5]])
odd = odd_ext(a, 2, axis=1)
expected = np.array([[-1, 0, 1, 2, 3, 4, 5, 6, 7],
[11, 10, 9, 8, 7, 6, 5, 4, 3]])
xp_assert_equal(odd, expected)
odd = odd_ext(a, 1, axis=0)
expected = np.array([[-7, -4, -1, 2, 5],
[1, 2, 3, 4, 5],
[9, 8, 7, 6, 5],
[17, 14, 11, 8, 5]])
xp_assert_equal(odd, expected)
assert_raises(ValueError, odd_ext, a, 2, axis=0)
assert_raises(ValueError, odd_ext, a, 5, axis=1)
def test_even_ext(self):
a = np.array([[1, 2, 3, 4, 5],
[9, 8, 7, 6, 5]])
even = even_ext(a, 2, axis=1)
expected = np.array([[3, 2, 1, 2, 3, 4, 5, 4, 3],
[7, 8, 9, 8, 7, 6, 5, 6, 7]])
xp_assert_equal(even, expected)
even = even_ext(a, 1, axis=0)
expected = np.array([[9, 8, 7, 6, 5],
[1, 2, 3, 4, 5],
[9, 8, 7, 6, 5],
[1, 2, 3, 4, 5]])
xp_assert_equal(even, expected)
assert_raises(ValueError, even_ext, a, 2, axis=0)
assert_raises(ValueError, even_ext, a, 5, axis=1)
def test_const_ext(self):
a = np.array([[1, 2, 3, 4, 5],
[9, 8, 7, 6, 5]])
const = const_ext(a, 2, axis=1)
expected = np.array([[1, 1, 1, 2, 3, 4, 5, 5, 5],
[9, 9, 9, 8, 7, 6, 5, 5, 5]])
xp_assert_equal(const, expected)
const = const_ext(a, 1, axis=0)
expected = np.array([[1, 2, 3, 4, 5],
[1, 2, 3, 4, 5],
[9, 8, 7, 6, 5],
[9, 8, 7, 6, 5]])
xp_assert_equal(const, expected)
def test_zero_ext(self):
a = np.array([[1, 2, 3, 4, 5],
[9, 8, 7, 6, 5]])
zero = zero_ext(a, 2, axis=1)
expected = np.array([[0, 0, 1, 2, 3, 4, 5, 0, 0],
[0, 0, 9, 8, 7, 6, 5, 0, 0]])
xp_assert_equal(zero, expected)
zero = zero_ext(a, 1, axis=0)
expected = np.array([[0, 0, 0, 0, 0],
[1, 2, 3, 4, 5],
[9, 8, 7, 6, 5],
[0, 0, 0, 0, 0]])
xp_assert_equal(zero, expected)

View file

@ -0,0 +1,365 @@
# pylint: disable=missing-docstring
import math
import numpy as np
from scipy._lib._array_api import (
assert_almost_equal, xp_assert_close, xp_assert_equal
)
import pytest
from pytest import raises
from scipy import signal
skip_xp_backends = pytest.mark.skip_xp_backends
xfail_xp_backends = pytest.mark.xfail_xp_backends
class TestBSplines:
"""Test behaviors of B-splines. Some of the values tested against were
returned as of SciPy 1.1.0 and are included for regression testing
purposes. Others (at integer points) are compared to theoretical
expressions (cf. Unser, Aldroubi, Eden, IEEE TSP 1993, Table 1)."""
@skip_xp_backends(cpu_only=True, exceptions=["cupy"])
def test_spline_filter(self, xp):
rng = np.random.RandomState(12457)
# Test the type-error branch
raises(TypeError, signal.spline_filter, xp.asarray([0]), 0)
# Test the real branch
data_array_real = rng.rand(12, 12)
# make the magnitude exceed 1, and make some negative
data_array_real = 10*(1-2*data_array_real)
data_array_real = xp.asarray(data_array_real)
result_array_real = xp.asarray(
[[-.463312621, 8.33391222, .697290949, 5.28390836,
5.92066474, 6.59452137, 9.84406950, -8.78324188,
7.20675750, -8.17222994, -4.38633345, 9.89917069],
[2.67755154, 6.24192170, -3.15730578, 9.87658581,
-9.96930425, 3.17194115, -4.50919947, 5.75423446,
9.65979824, -8.29066885, .971416087, -2.38331897],
[-7.08868346, 4.89887705, -1.37062289, 7.70705838,
2.51526461, 3.65885497, 5.16786604, -8.77715342e-03,
4.10533325, 9.04761993, -.577960351, 9.86382519],
[-4.71444301, -1.68038985, 2.84695116, 1.14315938,
-3.17127091, 1.91830461, 7.13779687, -5.35737482,
-9.66586425, -9.87717456, 9.93160672, 4.71948144],
[9.49551194, -1.92958436, 6.25427993, -9.05582911,
3.97562282, 7.68232426, -1.04514824, -5.86021443,
-8.43007451, 5.47528997, 2.06330736, -8.65968112],
[-8.91720100, 8.87065356, 3.76879937, 2.56222894,
-.828387146, 8.72288903, 6.42474741, -6.84576083,
9.94724115, 6.90665380, -6.61084494, -9.44907391],
[9.25196790, -.774032030, 7.05371046, -2.73505725,
2.53953305, -1.82889155, 2.95454824, -1.66362046,
5.72478916, -3.10287679, 1.54017123, -7.87759020],
[-3.98464539, -2.44316992, -1.12708657, 1.01725672,
-8.89294671, -5.42145629, -6.16370321, 2.91775492,
9.64132208, .702499998, -2.02622392, 1.56308431],
[-2.22050773, 7.89951554, 5.98970713, -7.35861835,
5.45459283, -7.76427957, 3.67280490, -4.05521315,
4.51967507, -3.22738749, -3.65080177, 3.05630155],
[-6.21240584, -.296796126, -8.34800163, 9.21564563,
-3.61958784, -4.77120006, -3.99454057, 1.05021988e-03,
-6.95982829, 6.04380797, 8.43181250, -2.71653339],
[1.19638037, 6.99718842e-02, 6.72020394, -2.13963198,
3.75309875, -5.70076744, 5.92143551, -7.22150575,
-3.77114594, -1.11903194, -5.39151466, 3.06620093],
[9.86326886, 1.05134482, -7.75950607, -3.64429655,
7.81848957, -9.02270373, 3.73399754, -4.71962549,
-7.71144306, 3.78263161, 6.46034818, -4.43444731]], dtype=xp.float64)
xp_assert_close(signal.spline_filter(data_array_real, 0),
result_array_real)
@skip_xp_backends(cpu_only=True, exceptions=["cupy"])
def test_spline_filter_complex(self, xp):
rng = np.random.RandomState(12457)
data_array_complex = rng.rand(7, 7) + rng.rand(7, 7)*1j
# make the magnitude exceed 1, and make some negative
data_array_complex = 10*(1+1j-2*data_array_complex)
data_array_complex = xp.asarray(data_array_complex)
result_array_complex = xp.asarray(
[[-4.61489230e-01-1.92994022j, 8.33332443+6.25519943j,
6.96300745e-01-9.05576038j, 5.28294849+3.97541356j,
5.92165565+7.68240595j, 6.59493160-1.04542804j,
9.84503460-5.85946894j],
[-8.78262329-8.4295969j, 7.20675516+5.47528982j,
-8.17223072+2.06330729j, -4.38633347-8.65968037j,
9.89916801-8.91720295j, 2.67755103+8.8706522j,
6.24192142+3.76879835j],
[-3.15627527+2.56303072j, 9.87658501-0.82838702j,
-9.96930313+8.72288895j, 3.17193985+6.42474651j,
-4.50919819-6.84576082j, 5.75423431+9.94723988j,
9.65979767+6.90665293j],
[-8.28993416-6.61064005j, 9.71416473e-01-9.44907284j,
-2.38331890+9.25196648j, -7.08868170-0.77403212j,
4.89887714+7.05371094j, -1.37062311-2.73505688j,
7.70705748+2.5395329j],
[2.51528406-1.82964492j, 3.65885472+2.95454836j,
5.16786575-1.66362023j, -8.77737999e-03+5.72478867j,
4.10533333-3.10287571j, 9.04761887+1.54017115j,
-5.77960968e-01-7.87758923j],
[9.86398506-3.98528528j, -4.71444130-2.44316983j,
-1.68038976-1.12708664j, 2.84695053+1.01725709j,
1.14315915-8.89294529j, -3.17127085-5.42145538j,
1.91830420-6.16370344j],
[7.13875294+2.91851187j, -5.35737514+9.64132309j,
-9.66586399+0.70250005j, -9.87717438-2.0262239j,
9.93160629+1.5630846j, 4.71948051-2.22050714j,
9.49550819+7.8995142j]], dtype=xp.complex128)
# FIXME: for complex types, the computations are done in
# single precision (reason unclear). When this is changed,
# this test needs updating.
xp_assert_close(signal.spline_filter(data_array_complex, 0),
result_array_complex, rtol=1e-6)
def test_gauss_spline(self, xp):
assert math.isclose(signal.gauss_spline(0, 0), 1.381976597885342)
xp_assert_close(signal.gauss_spline(xp.asarray([1.]), 1),
xp.asarray([0.04865217]), atol=1e-9
)
@skip_xp_backends(np_only=True, reason="deliberate: array-likes are accepted")
def test_gauss_spline_list(self, xp):
# regression test for gh-12152 (accept array_like)
knots = [-1.0, 0.0, -1.0]
assert_almost_equal(signal.gauss_spline(knots, 3),
np.asarray([0.15418033, 0.6909883, 0.15418033])
)
@skip_xp_backends(cpu_only=True)
def test_cspline1d(self, xp):
xp_assert_equal(signal.cspline1d(xp.asarray([0])),
xp.asarray([0.], dtype=xp.float64))
c1d = xp.asarray([1.21037185, 1.86293902, 2.98834059, 4.11660378,
4.78893826], dtype=xp.float64)
# test lamda != 0
xp_assert_close(signal.cspline1d(xp.asarray([1., 2, 3, 4, 5]), 1), c1d)
c1d0 = xp.asarray([0.78683946, 2.05333735, 2.99981113, 3.94741812,
5.21051638], dtype=xp.float64)
xp_assert_close(signal.cspline1d(xp.asarray([1., 2, 3, 4, 5])), c1d0)
@skip_xp_backends(cpu_only=True)
def test_qspline1d(self, xp):
xp_assert_equal(signal.qspline1d(xp.asarray([0])),
xp.asarray([0.], dtype=xp.float64))
# test lamda != 0
raises(ValueError, signal.qspline1d, xp.asarray([1., 2, 3, 4, 5]), 1.)
raises(ValueError, signal.qspline1d, xp.asarray([1., 2, 3, 4, 5]), -1.)
q1d0 = xp.asarray([0.85350007, 2.02441743, 2.99999534, 3.97561055,
5.14634135], dtype=xp.float64)
xp_assert_close(
signal.qspline1d(xp.asarray([1., 2, 3, 4, 5], dtype=xp.float64)), q1d0
)
@skip_xp_backends(cpu_only=True)
def test_cspline1d_eval(self, xp):
r = signal.cspline1d_eval(xp.asarray([0., 0], dtype=xp.float64),
xp.asarray([0.], dtype=xp.float64))
xp_assert_close(r, xp.asarray([0.], dtype=xp.float64))
r = signal.cspline1d_eval(xp.asarray([1., 0, 1], dtype=xp.float64),
xp.asarray([], dtype=xp.float64))
xp_assert_equal(r, xp.asarray([], dtype=xp.float64))
x = [-3, -2, -1, 0, 1, 2, 3, 4, 5, 6]
dx = x[1] - x[0]
newx = [-6., -5.5, -5., -4.5, -4., -3.5, -3., -2.5, -2., -1.5, -1.,
-0.5, 0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6.,
6.5, 7., 7.5, 8., 8.5, 9., 9.5, 10., 10.5, 11., 11.5, 12.,
12.5]
y = xp.asarray([4.216, 6.864, 3.514, 6.203, 6.759, 7.433, 7.874, 5.879,
1.396, 4.094])
cj = signal.cspline1d(y)
newy = xp.asarray([6.203, 4.41570658, 3.514, 5.16924703, 6.864, 6.04643068,
4.21600281, 6.04643068, 6.864, 5.16924703, 3.514,
4.41570658, 6.203, 6.80717667, 6.759, 6.98971173, 7.433,
7.79560142, 7.874, 7.41525761, 5.879, 3.18686814, 1.396,
2.24889482, 4.094, 2.24889482, 1.396, 3.18686814, 5.879,
7.41525761, 7.874, 7.79560142, 7.433, 6.98971173, 6.759,
6.80717667, 6.203, 4.41570658], dtype=xp.float64)
xp_assert_close(
signal.cspline1d_eval(cj, xp.asarray(newx), dx=dx, x0=x[0]), newy
)
with pytest.raises(ValueError,
match="Spline coefficients 'cj' must not be empty."):
signal.cspline1d_eval(xp.asarray([], dtype=xp.float64),
xp.asarray([0.0], dtype=xp.float64))
@skip_xp_backends(cpu_only=True)
def test_qspline1d_eval(self, xp):
xp_assert_close(signal.qspline1d_eval(xp.asarray([0., 0]), xp.asarray([0.])),
xp.asarray([0.])
)
xp_assert_equal(signal.qspline1d_eval(xp.asarray([1., 0, 1]), xp.asarray([])),
xp.asarray([])
)
x = [-3, -2, -1, 0, 1, 2, 3, 4, 5, 6]
dx = x[1] - x[0]
newx = [-6., -5.5, -5., -4.5, -4., -3.5, -3., -2.5, -2., -1.5, -1.,
-0.5, 0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6.,
6.5, 7., 7.5, 8., 8.5, 9., 9.5, 10., 10.5, 11., 11.5, 12.,
12.5]
y = xp.asarray([4.216, 6.864, 3.514, 6.203, 6.759, 7.433, 7.874, 5.879,
1.396, 4.094])
cj = signal.qspline1d(y)
newy = xp.asarray([6.203, 4.49418159, 3.514, 5.18390821, 6.864, 5.91436915,
4.21600002, 5.91436915, 6.864, 5.18390821, 3.514,
4.49418159, 6.203, 6.71900226, 6.759, 7.03980488, 7.433,
7.81016848, 7.874, 7.32718426, 5.879, 3.23872593, 1.396,
2.34046013, 4.094, 2.34046013, 1.396, 3.23872593, 5.879,
7.32718426, 7.874, 7.81016848, 7.433, 7.03980488, 6.759,
6.71900226, 6.203, 4.49418159], dtype=xp.float64)
r = signal.qspline1d_eval(
cj, xp.asarray(newx, dtype=xp.float64), dx=dx, x0=x[0]
)
xp_assert_close(r, newy)
with pytest.raises(ValueError,
match="Spline coefficients 'cj' must not be empty."):
signal.qspline1d_eval(xp.asarray([], dtype=xp.float64),
xp.asarray([0.0], dtype=xp.float64))
# i/o dtypes with scipy 1.9.1, likely fixed by backwards compat
sepfir_dtype_map = {np.uint8: np.float32, int: np.float64,
np.float32: np.float32, float: float,
np.complex64: np.complex64, complex: complex}
@skip_xp_backends(np_only=True)
class TestSepfir2d:
def test_sepfir2d_invalid_filter(self, xp):
filt = xp.asarray([1.0, 2.0, 4.0, 2.0, 1.0])
image = np.random.rand(7, 9)
image = xp.asarray(image)
# No error for odd lengths
signal.sepfir2d(image, filt, filt[2:])
# Row or column filter must be odd
with pytest.raises(ValueError, match="odd length"):
signal.sepfir2d(image, filt, filt[1:])
with pytest.raises(ValueError, match="odd length"):
signal.sepfir2d(image, filt[1:], filt)
# Filters must be 1-dimensional
with pytest.raises(ValueError, match="object too deep"):
signal.sepfir2d(image, xp.reshape(filt, (1, -1)), filt)
with pytest.raises(ValueError, match="object too deep"):
signal.sepfir2d(image, filt, xp.reshape(filt, (1, -1)))
def test_sepfir2d_invalid_image(self, xp):
filt = xp.asarray([1.0, 2.0, 4.0, 2.0, 1.0])
image = np.random.rand(8, 8)
image = xp.asarray(image)
# Image must be 2 dimensional
with pytest.raises(ValueError, match="object too deep"):
signal.sepfir2d(xp.reshape(image, (4, 4, 4)), filt, filt)
with pytest.raises(ValueError, match="object of too small depth"):
signal.sepfir2d(image[0, :], filt, filt)
@pytest.mark.parametrize('dtyp',
[np.uint8, int, np.float32, float, np.complex64, complex]
)
def test_simple(self, dtyp, xp):
# test values on a paper-and-pencil example
a = np.array([[1, 2, 3, 3, 2, 1],
[1, 2, 3, 3, 2, 1],
[1, 2, 3, 3, 2, 1],
[1, 2, 3, 3, 2, 1]], dtype=dtyp)
h1 = [0.5, 1, 0.5]
h2 = [1]
result = signal.sepfir2d(a, h1, h2)
dt = sepfir_dtype_map[dtyp]
expected = np.asarray([[2.5, 4. , 5.5, 5.5, 4. , 2.5],
[2.5, 4. , 5.5, 5.5, 4. , 2.5],
[2.5, 4. , 5.5, 5.5, 4. , 2.5],
[2.5, 4. , 5.5, 5.5, 4. , 2.5]], dtype=dt)
xp_assert_close(result, expected, atol=1e-16)
result = signal.sepfir2d(a, h2, h1)
expected = np.asarray([[2., 4., 6., 6., 4., 2.],
[2., 4., 6., 6., 4., 2.],
[2., 4., 6., 6., 4., 2.],
[2., 4., 6., 6., 4., 2.]], dtype=dt)
xp_assert_close(result, expected, atol=1e-16)
@skip_xp_backends(np_only=True, reason="TODO: convert this test")
@pytest.mark.parametrize('dtyp',
[np.uint8, int, np.float32, float, np.complex64, complex]
)
def test_strided(self, dtyp, xp):
a = np.array([[1, 2, 3, 3, 2, 1, 1, 2, 3],
[1, 2, 3, 3, 2, 1, 1, 2, 3],
[1, 2, 3, 3, 2, 1, 1, 2, 3],
[1, 2, 3, 3, 2, 1, 1, 2, 3]])
h1, h2 = [0.5, 1, 0.5], [1]
result_strided = signal.sepfir2d(a[:, ::2], h1, h2)
result_contig = signal.sepfir2d(a[:, ::2].copy(), h1, h2)
xp_assert_close(result_strided, result_contig, atol=1e-15)
assert result_strided.dtype == result_contig.dtype
@skip_xp_backends(np_only=True, reason="TODO: convert this test")
@pytest.mark.xfail(reason="XXX: filt.size > image.shape: flaky")
def test_sepfir2d_strided_2(self, xp):
# XXX: this test is flaky: fails on some reruns, with
# result[0, 1] and result[1, 1] being ~1e+224.
filt = np.array([1.0, 2.0, 4.0, 2.0, 1.0, 3.0, 2.0])
image = np.random.rand(4, 4)
expected = np.asarray([[36.018162, 30.239061, 38.71187 , 43.878183],
[38.180999, 35.824583, 43.525247, 43.874945],
[43.269533, 40.834018, 46.757772, 44.276423],
[49.120928, 39.681844, 43.596067, 45.085854]])
xp_assert_close(signal.sepfir2d(image, filt, filt[::3]), expected)
@skip_xp_backends(np_only=True, reason="TODO: convert this test")
@pytest.mark.xfail(reason="XXX: flaky. pointers OOB on some platforms")
@pytest.mark.parametrize('dtyp',
[np.uint8, int, np.float32, float, np.complex64, complex]
)
def test_sepfir2d_strided_3(self, dtyp, xp):
# NB: 'image' and 'filt' dtypes match here. Otherwise we can run into
# unsafe casting errors for many combinations. Historically, dtype handling
# in `sepfir2d` is a tad baroque; fixing it is an enhancement.
filt = np.array([1, 2, 4, 2, 1, 3, 2], dtype=dtyp)
image = np.asarray([[0, 3, 0, 1, 2],
[2, 2, 3, 3, 3],
[0, 1, 3, 0, 3],
[2, 3, 0, 1, 3],
[3, 3, 2, 1, 2]], dtype=dtyp)
expected = [[123., 101., 91., 136., 127.],
[133., 125., 126., 152., 160.],
[136., 137., 150., 162., 177.],
[133., 124., 132., 148., 147.],
[173., 158., 152., 164., 141.]]
expected = np.asarray(expected)
result = signal.sepfir2d(image, filt, filt[::3])
xp_assert_close(result, expected, atol=1e-15)
assert result.dtype == sepfir_dtype_map[dtyp]
expected = [[22., 35., 41., 31., 47.],
[27., 39., 48., 47., 55.],
[33., 42., 49., 53., 59.],
[39., 44., 41., 36., 48.],
[67., 62., 47., 34., 46.]]
expected = np.asarray(expected)
result = signal.sepfir2d(image, filt[::3], filt[::3])
xp_assert_close(result, expected, atol=1e-15)
assert result.dtype == sepfir_dtype_map[dtyp]
def test_cspline2d(xp):
rng = np.random.RandomState(181819142)
image = rng.rand(71, 73)
signal.cspline2d(image, 8.0)
def test_qspline2d(xp):
rng = np.random.RandomState(181819143)
image = rng.rand(71, 73)
signal.qspline2d(image)

View file

@ -0,0 +1,424 @@
import numpy as np
from scipy._lib._array_api import (
assert_array_almost_equal, assert_almost_equal, xp_assert_close
)
import pytest
from scipy.signal import cont2discrete as c2d
from scipy.signal import dlsim, ss2tf, ss2zpk, lsim, lti
from scipy.signal import tf2ss, impulse, dimpulse, step, dstep
# Author: Jeffrey Armstrong <jeff@approximatrix.com>
# March 29, 2011
class TestC2D:
def test_zoh(self):
ac = np.eye(2, dtype=np.float64)
bc = np.full((2, 1), 0.5, dtype=np.float64)
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
dc = np.array([[0.0], [0.0], [-0.33]])
ad_truth = 1.648721270700128 * np.eye(2)
bd_truth = np.full((2, 1), 0.324360635350064)
# c and d in discrete should be equal to their continuous counterparts
dt_requested = 0.5
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested, method='zoh')
assert_array_almost_equal(ad_truth, ad)
assert_array_almost_equal(bd_truth, bd)
assert_array_almost_equal(cc, cd)
assert_array_almost_equal(dc, dd)
assert_almost_equal(dt_requested, dt)
def test_foh(self):
ac = np.eye(2)
bc = np.full((2, 1), 0.5)
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
dc = np.array([[0.0], [0.0], [-0.33]])
# True values are verified with Matlab
ad_truth = 1.648721270700128 * np.eye(2)
bd_truth = np.full((2, 1), 0.420839287058789)
cd_truth = cc
dd_truth = np.array([[0.260262223725224],
[0.297442541400256],
[-0.144098411624840]])
dt_requested = 0.5
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested, method='foh')
assert_array_almost_equal(ad_truth, ad)
assert_array_almost_equal(bd_truth, bd)
assert_array_almost_equal(cd_truth, cd)
assert_array_almost_equal(dd_truth, dd)
assert_almost_equal(dt_requested, dt)
def test_impulse(self):
ac = np.eye(2)
bc = np.full((2, 1), 0.5)
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
dc = np.array([[0.0], [0.0], [0.0]])
# True values are verified with Matlab
ad_truth = 1.648721270700128 * np.eye(2)
bd_truth = np.full((2, 1), 0.412180317675032)
cd_truth = cc
dd_truth = np.array([[0.4375], [0.5], [0.3125]])
dt_requested = 0.5
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested,
method='impulse')
assert_array_almost_equal(ad_truth, ad)
assert_array_almost_equal(bd_truth, bd)
assert_array_almost_equal(cd_truth, cd)
assert_array_almost_equal(dd_truth, dd)
assert_almost_equal(dt_requested, dt)
def test_gbt(self):
ac = np.eye(2)
bc = np.full((2, 1), 0.5)
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
dc = np.array([[0.0], [0.0], [-0.33]])
dt_requested = 0.5
alpha = 1.0 / 3.0
ad_truth = 1.6 * np.eye(2)
bd_truth = np.full((2, 1), 0.3)
cd_truth = np.array([[0.9, 1.2],
[1.2, 1.2],
[1.2, 0.3]])
dd_truth = np.array([[0.175],
[0.2],
[-0.205]])
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested,
method='gbt', alpha=alpha)
assert_array_almost_equal(ad_truth, ad)
assert_array_almost_equal(bd_truth, bd)
assert_array_almost_equal(cd_truth, cd)
assert_array_almost_equal(dd_truth, dd)
def test_euler(self):
ac = np.eye(2)
bc = np.full((2, 1), 0.5)
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
dc = np.array([[0.0], [0.0], [-0.33]])
dt_requested = 0.5
ad_truth = 1.5 * np.eye(2)
bd_truth = np.full((2, 1), 0.25)
cd_truth = np.array([[0.75, 1.0],
[1.0, 1.0],
[1.0, 0.25]])
dd_truth = dc
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested,
method='euler')
assert_array_almost_equal(ad_truth, ad)
assert_array_almost_equal(bd_truth, bd)
assert_array_almost_equal(cd_truth, cd)
assert_array_almost_equal(dd_truth, dd)
assert_almost_equal(dt_requested, dt)
def test_backward_diff(self):
ac = np.eye(2)
bc = np.full((2, 1), 0.5)
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
dc = np.array([[0.0], [0.0], [-0.33]])
dt_requested = 0.5
ad_truth = 2.0 * np.eye(2)
bd_truth = np.full((2, 1), 0.5)
cd_truth = np.array([[1.5, 2.0],
[2.0, 2.0],
[2.0, 0.5]])
dd_truth = np.array([[0.875],
[1.0],
[0.295]])
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested,
method='backward_diff')
assert_array_almost_equal(ad_truth, ad)
assert_array_almost_equal(bd_truth, bd)
assert_array_almost_equal(cd_truth, cd)
assert_array_almost_equal(dd_truth, dd)
def test_bilinear(self):
ac = np.eye(2)
bc = np.full((2, 1), 0.5)
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
dc = np.array([[0.0], [0.0], [-0.33]])
dt_requested = 0.5
ad_truth = (5.0 / 3.0) * np.eye(2)
bd_truth = np.full((2, 1), 1.0 / 3.0)
cd_truth = np.array([[1.0, 4.0 / 3.0],
[4.0 / 3.0, 4.0 / 3.0],
[4.0 / 3.0, 1.0 / 3.0]])
dd_truth = np.array([[0.291666666666667],
[1.0 / 3.0],
[-0.121666666666667]])
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested,
method='bilinear')
assert_array_almost_equal(ad_truth, ad)
assert_array_almost_equal(bd_truth, bd)
assert_array_almost_equal(cd_truth, cd)
assert_array_almost_equal(dd_truth, dd)
assert_almost_equal(dt_requested, dt)
# Same continuous system again, but change sampling rate
ad_truth = 1.4 * np.eye(2)
bd_truth = np.full((2, 1), 0.2)
cd_truth = np.array([[0.9, 1.2], [1.2, 1.2], [1.2, 0.3]])
dd_truth = np.array([[0.175], [0.2], [-0.205]])
dt_requested = 1.0 / 3.0
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested,
method='bilinear')
assert_array_almost_equal(ad_truth, ad)
assert_array_almost_equal(bd_truth, bd)
assert_array_almost_equal(cd_truth, cd)
assert_array_almost_equal(dd_truth, dd)
assert_almost_equal(dt_requested, dt)
def test_transferfunction(self):
numc = np.array([0.25, 0.25, 0.5])
denc = np.array([0.75, 0.75, 1.0])
numd = np.array([[1.0 / 3.0, -0.427419169438754, 0.221654141101125]])
dend = np.array([1.0, -1.351394049721225, 0.606530659712634])
dt_requested = 0.5
num, den, dt = c2d((numc, denc), dt_requested, method='zoh')
assert_array_almost_equal(numd, num)
assert_array_almost_equal(dend, den)
assert_almost_equal(dt_requested, dt)
def test_zerospolesgain(self):
zeros_c = np.array([0.5, -0.5])
poles_c = np.array([1.j / np.sqrt(2), -1.j / np.sqrt(2)])
k_c = 1.0
zeros_d = [1.23371727305860, 0.735356894461267]
polls_d = [0.938148335039729 + 0.346233593780536j,
0.938148335039729 - 0.346233593780536j]
k_d = 1.0
dt_requested = 0.5
zeros, poles, k, dt = c2d((zeros_c, poles_c, k_c), dt_requested,
method='zoh')
assert_array_almost_equal(zeros_d, zeros)
assert_array_almost_equal(polls_d, poles)
assert_almost_equal(k_d, k)
assert_almost_equal(dt_requested, dt)
def test_gbt_with_sio_tf_and_zpk(self):
"""Test method='gbt' with alpha=0.25 for tf and zpk cases."""
# State space coefficients for the continuous SIO system.
A = -1.0
B = 1.0
C = 1.0
D = 0.5
# The continuous transfer function coefficients.
cnum, cden = ss2tf(A, B, C, D)
# Continuous zpk representation
cz, cp, ck = ss2zpk(A, B, C, D)
h = 1.0
alpha = 0.25
# Explicit formulas, in the scalar case.
Ad = (1 + (1 - alpha) * h * A) / (1 - alpha * h * A)
Bd = h * B / (1 - alpha * h * A)
Cd = C / (1 - alpha * h * A)
Dd = D + alpha * C * Bd
# Convert the explicit solution to tf
dnum, dden = ss2tf(Ad, Bd, Cd, Dd)
# Compute the discrete tf using cont2discrete.
c2dnum, c2dden, dt = c2d((cnum, cden), h, method='gbt', alpha=alpha)
xp_assert_close(dnum, c2dnum)
xp_assert_close(dden, c2dden)
# Convert explicit solution to zpk.
dz, dp, dk = ss2zpk(Ad, Bd, Cd, Dd)
# Compute the discrete zpk using cont2discrete.
c2dz, c2dp, c2dk, dt = c2d((cz, cp, ck), h, method='gbt', alpha=alpha)
xp_assert_close(dz, c2dz)
xp_assert_close(dp, c2dp)
xp_assert_close(dk, c2dk)
def test_discrete_approx(self):
"""
Test that the solution to the discrete approximation of a continuous
system actually approximates the solution to the continuous system.
This is an indirect test of the correctness of the implementation
of cont2discrete.
"""
def u(t):
return np.sin(2.5 * t)
a = np.array([[-0.01]])
b = np.array([[1.0]])
c = np.array([[1.0]])
d = np.array([[0.2]])
x0 = 1.0
t = np.linspace(0, 10.0, 101)
dt = t[1] - t[0]
u1 = u(t)
# Use lsim to compute the solution to the continuous system.
t, yout, xout = lsim((a, b, c, d), T=t, U=u1, X0=x0)
# Convert the continuous system to a discrete approximation.
dsys = c2d((a, b, c, d), dt, method='bilinear')
# Use dlsim with the pairwise averaged input to compute the output
# of the discrete system.
u2 = 0.5 * (u1[:-1] + u1[1:])
t2 = t[:-1]
td2, yd2, xd2 = dlsim(dsys, u=u2.reshape(-1, 1), t=t2, x0=x0)
# ymid is the average of consecutive terms of the "exact" output
# computed by lsim2. This is what the discrete approximation
# actually approximates.
ymid = 0.5 * (yout[:-1] + yout[1:])
xp_assert_close(yd2.ravel(), ymid, rtol=1e-4)
def test_simo_tf(self):
# See gh-5753
tf = ([[1, 0], [1, 1]], [1, 1])
num, den, dt = c2d(tf, 0.01)
assert dt == 0.01 # sanity check
xp_assert_close(den, [1, -0.990404983], rtol=1e-3)
xp_assert_close(num, [[1, -1], [1, -0.99004983]], rtol=1e-3)
def test_multioutput(self):
ts = 0.01 # time step
tf = ([[1, -3], [1, 5]], [1, 1])
num, den, dt = c2d(tf, ts)
tf1 = (tf[0][0], tf[1])
num1, den1, dt1 = c2d(tf1, ts)
tf2 = (tf[0][1], tf[1])
num2, den2, dt2 = c2d(tf2, ts)
# Sanity checks
assert dt == dt1
assert dt == dt2
# Check that we get the same results
xp_assert_close(num, np.vstack((num1, num2)), rtol=1e-13)
# Single input, so the denominator should
# not be multidimensional like the numerator
xp_assert_close(den, den1, rtol=1e-13)
xp_assert_close(den, den2, rtol=1e-13)
class TestC2dLti:
def test_c2d_ss(self):
# StateSpace
A = np.array([[-0.3, 0.1], [0.2, -0.7]])
B = np.array([[0], [1]])
C = np.array([[1, 0]])
D = 0
dt = 0.05
A_res = np.array([[0.985136404135682, 0.004876671474795],
[0.009753342949590, 0.965629718236502]])
B_res = np.array([[0.000122937599964], [0.049135527547844]])
sys_ssc = lti(A, B, C, D)
sys_ssd = sys_ssc.to_discrete(dt=dt)
xp_assert_close(sys_ssd.A, A_res)
xp_assert_close(sys_ssd.B, B_res)
xp_assert_close(sys_ssd.C, C)
xp_assert_close(sys_ssd.D, np.zeros_like(sys_ssd.D))
sys_ssd2 = c2d(sys_ssc, dt=dt)
xp_assert_close(sys_ssd2.A, A_res)
xp_assert_close(sys_ssd2.B, B_res)
xp_assert_close(sys_ssd2.C, C)
xp_assert_close(sys_ssd2.D, np.zeros_like(sys_ssd2.D))
def test_c2d_tf(self):
sys = lti([0.5, 0.3], [1.0, 0.4])
sys = sys.to_discrete(0.005)
# Matlab results
num_res = np.array([0.5, -0.485149004980066])
den_res = np.array([1.0, -0.980198673306755])
# Somehow a lot of numerical errors
xp_assert_close(sys.den, den_res, atol=0.02)
xp_assert_close(sys.num, num_res, atol=0.02)
class TestC2dInvariants:
# Some test cases for checking the invariances.
# Array of triplets: (system, sample time, number of samples)
cases = [
(tf2ss([1, 1], [1, 1.5, 1]), 0.25, 10),
(tf2ss([1, 2], [1, 1.5, 3, 1]), 0.5, 10),
(tf2ss(0.1, [1, 1, 2, 1]), 0.5, 10),
]
# Check that systems discretized with the impulse-invariant
# method really hold the invariant
@pytest.mark.parametrize("sys,sample_time,samples_number", cases)
def test_impulse_invariant(self, sys, sample_time, samples_number):
time = np.arange(samples_number) * sample_time
_, yout_cont = impulse(sys, T=time)
_, yout_disc = dimpulse(c2d(sys, sample_time, method='impulse'),
n=len(time))
xp_assert_close(sample_time * yout_cont.ravel(), yout_disc[0].ravel())
# Step invariant should hold for ZOH discretized systems
@pytest.mark.parametrize("sys,sample_time,samples_number", cases)
def test_step_invariant(self, sys, sample_time, samples_number):
time = np.arange(samples_number) * sample_time
_, yout_cont = step(sys, T=time)
_, yout_disc = dstep(c2d(sys, sample_time, method='zoh'), n=len(time))
xp_assert_close(yout_cont.ravel(), yout_disc[0].ravel())
# Linear invariant should hold for FOH discretized systems
@pytest.mark.parametrize("sys,sample_time,samples_number", cases)
def test_linear_invariant(self, sys, sample_time, samples_number):
time = np.arange(samples_number) * sample_time
_, yout_cont, _ = lsim(sys, T=time, U=time)
_, yout_disc, _ = dlsim(c2d(sys, sample_time, method='foh'), u=time)
xp_assert_close(yout_cont.ravel(), yout_disc.ravel())

View file

@ -0,0 +1,221 @@
# This program is public domain
# Authors: Paul Kienzle, Nadav Horesh
'''
A unit test module for czt.py
'''
import pytest
from scipy._lib._array_api import xp_assert_close
from scipy.fft import fft
from scipy.signal import (czt, zoom_fft, czt_points, CZT, ZoomFFT)
import numpy as np
def check_czt(x):
# Check that czt is the equivalent of normal fft
y = fft(x)
y1 = czt(x)
xp_assert_close(y1, y, rtol=1e-13)
# Check that interpolated czt is the equivalent of normal fft
y = fft(x, 100*len(x))
y1 = czt(x, 100*len(x))
xp_assert_close(y1, y, rtol=1e-12)
def check_zoom_fft(x):
# Check that zoom_fft is the equivalent of normal fft
y = fft(x)
y1 = zoom_fft(x, [0, 2-2./len(y)], endpoint=True)
xp_assert_close(y1, y, rtol=1e-11, atol=1e-14)
y1 = zoom_fft(x, [0, 2])
xp_assert_close(y1, y, rtol=1e-11, atol=1e-14)
# Test fn scalar
y1 = zoom_fft(x, 2-2./len(y), endpoint=True)
xp_assert_close(y1, y, rtol=1e-11, atol=1e-14)
y1 = zoom_fft(x, 2)
xp_assert_close(y1, y, rtol=1e-11, atol=1e-14)
# Check that zoom_fft with oversampling is equivalent to zero padding
over = 10
yover = fft(x, over*len(x))
y2 = zoom_fft(x, [0, 2-2./len(yover)], m=len(yover), endpoint=True)
xp_assert_close(y2, yover, rtol=1e-12, atol=1e-10)
y2 = zoom_fft(x, [0, 2], m=len(yover))
xp_assert_close(y2, yover, rtol=1e-12, atol=1e-10)
# Check that zoom_fft works on a subrange
w = np.linspace(0, 2-2./len(x), len(x))
f1, f2 = w[3], w[6]
y3 = zoom_fft(x, [f1, f2], m=3*over+1, endpoint=True)
idx3 = slice(3*over, 6*over+1)
xp_assert_close(y3, yover[idx3], rtol=1e-13)
def test_1D():
# Test of 1D version of the transforms
rng = np.random.RandomState(0) # Deterministic randomness
# Random signals
lengths = rng.randint(8, 200, 20)
np.append(lengths, 1)
for length in lengths:
x = rng.random(length)
check_zoom_fft(x)
check_czt(x)
# Gauss
t = np.linspace(-2, 2, 128)
x = np.exp(-t**2/0.01)
check_zoom_fft(x)
# Linear
x = [1, 2, 3, 4, 5, 6, 7]
check_zoom_fft(x)
# Check near powers of two
check_zoom_fft(range(126-31))
check_zoom_fft(range(127-31))
check_zoom_fft(range(128-31))
check_zoom_fft(range(129-31))
check_zoom_fft(range(130-31))
# Check transform on n-D array input
x = np.reshape(np.arange(3*2*28), (3, 2, 28))
y1 = zoom_fft(x, [0, 2-2./28])
y2 = zoom_fft(x[2, 0, :], [0, 2-2./28])
xp_assert_close(y1[2, 0], y2, rtol=1e-13, atol=1e-12)
y1 = zoom_fft(x, [0, 2], endpoint=False)
y2 = zoom_fft(x[2, 0, :], [0, 2], endpoint=False)
xp_assert_close(y1[2, 0], y2, rtol=1e-13, atol=1e-12)
# Random (not a test condition)
x = rng.rand(101)
check_zoom_fft(x)
# Spikes
t = np.linspace(0, 1, 128)
x = np.sin(2*np.pi*t*5)+np.sin(2*np.pi*t*13)
check_zoom_fft(x)
# Sines
x = np.zeros(100, dtype=complex)
x[[1, 5, 21]] = 1
check_zoom_fft(x)
# Sines plus complex component
x += 1j*np.linspace(0, 0.5, x.shape[0])
check_zoom_fft(x)
def test_large_prime_lengths():
rng = np.random.RandomState(0) # Deterministic randomness
for N in (101, 1009, 10007):
x = rng.rand(N)
y = fft(x)
y1 = czt(x)
xp_assert_close(y, y1, rtol=1e-12)
@pytest.mark.slow
def test_czt_vs_fft():
rng = np.random.RandomState(123) # Deterministic randomness
random_lengths = rng.exponential(100000, size=10).astype('int')
for n in random_lengths:
a = rng.randn(n)
xp_assert_close(czt(a), fft(a), rtol=1e-11)
def test_empty_input():
with pytest.raises(ValueError, match='Invalid number of CZT'):
czt([])
with pytest.raises(ValueError, match='Invalid number of CZT'):
zoom_fft([], 0.5)
def test_0_rank_input():
with pytest.raises(IndexError, match='tuple index out of range'):
czt(5)
with pytest.raises(IndexError, match='tuple index out of range'):
zoom_fft(5, 0.5)
@pytest.mark.parametrize('impulse', ([0, 0, 1], [0, 0, 1, 0, 0],
np.concatenate((np.array([0, 0, 1]),
np.zeros(100)))))
@pytest.mark.parametrize('m', (1, 3, 5, 8, 101, 1021))
@pytest.mark.parametrize('a', (1, 2, 0.5, 1.1))
# Step that tests away from the unit circle, but not so far it explodes from
# numerical error
@pytest.mark.parametrize('w', (None, 0.98534 + 0.17055j))
def test_czt_math(impulse, m, w, a):
# z-transform of an impulse is 1 everywhere
xp_assert_close(czt(impulse[2:], m=m, w=w, a=a),
np.ones(m, dtype=np.complex128), rtol=1e-10)
# z-transform of a delayed impulse is z**-1
xp_assert_close(czt(impulse[1:], m=m, w=w, a=a),
czt_points(m=m, w=w, a=a)**-1, rtol=1e-10)
# z-transform of a 2-delayed impulse is z**-2
xp_assert_close(czt(impulse, m=m, w=w, a=a),
czt_points(m=m, w=w, a=a)**-2, rtol=1e-10)
def test_int_args():
# Integer argument `a` was producing all 0s
xp_assert_close(abs(czt([0, 1], m=10, a=2)), 0.5*np.ones(10), rtol=1e-15)
xp_assert_close(czt_points(11, w=2),
1/(2**np.arange(11, dtype=np.complex128)), rtol=1e-30)
def test_czt_points():
for N in (1, 2, 3, 8, 11, 100, 101, 10007):
xp_assert_close(czt_points(N), np.exp(2j*np.pi*np.arange(N)/N),
rtol=1e-30)
xp_assert_close(czt_points(7, w=1), np.ones(7, dtype=np.complex128), rtol=1e-30)
xp_assert_close(czt_points(11, w=2.),
1/(2**np.arange(11, dtype=np.complex128)), rtol=1e-30)
func = CZT(12, m=11, w=2., a=1)
xp_assert_close(func.points(), 1/(2**np.arange(11)), rtol=1e-30)
@pytest.mark.parametrize('cls, args', [(CZT, (100,)), (ZoomFFT, (100, 0.2))])
def test_CZT_size_mismatch(cls, args):
# Data size doesn't match function's expected size
myfunc = cls(*args)
with pytest.raises(ValueError, match='CZT defined for'):
myfunc(np.arange(5))
def test_invalid_range():
with pytest.raises(ValueError, match='2-length sequence'):
ZoomFFT(100, [1, 2, 3])
@pytest.mark.parametrize('m', [0, -11, 5.5, 4.0])
def test_czt_points_errors(m):
# Invalid number of points
with pytest.raises(ValueError, match='Invalid number of CZT'):
czt_points(m)
@pytest.mark.parametrize('size', [0, -5, 3.5, 4.0])
def test_nonsense_size(size):
# Numpy and Scipy fft() give ValueError for 0 output size, so we do, too
with pytest.raises(ValueError, match='Invalid number of CZT'):
CZT(size, 3)
with pytest.raises(ValueError, match='Invalid number of CZT'):
ZoomFFT(size, 0.2, 3)
with pytest.raises(ValueError, match='Invalid number of CZT'):
CZT(3, size)
with pytest.raises(ValueError, match='Invalid number of CZT'):
ZoomFFT(3, 0.2, size)
with pytest.raises(ValueError, match='Invalid number of CZT'):
czt([1, 2, 3], size)
with pytest.raises(ValueError, match='Invalid number of CZT'):
zoom_fft([1, 2, 3], 0.2, size)

View file

@ -0,0 +1,599 @@
# Author: Jeffrey Armstrong <jeff@approximatrix.com>
# April 4, 2011
import numpy as np
from numpy.testing import suppress_warnings
from pytest import raises as assert_raises
from scipy._lib._array_api import (
assert_array_almost_equal, assert_almost_equal, xp_assert_close, xp_assert_equal,
)
from scipy.signal import (dlsim, dstep, dimpulse, tf2zpk, lti, dlti,
StateSpace, TransferFunction, ZerosPolesGain,
dfreqresp, dbode, BadCoefficients)
class TestDLTI:
def test_dlsim(self):
a = np.asarray([[0.9, 0.1], [-0.2, 0.9]])
b = np.asarray([[0.4, 0.1, -0.1], [0.0, 0.05, 0.0]])
c = np.asarray([[0.1, 0.3]])
d = np.asarray([[0.0, -0.1, 0.0]])
dt = 0.5
# Create an input matrix with inputs down the columns (3 cols) and its
# respective time input vector
u = np.hstack((np.linspace(0, 4.0, num=5)[:, np.newaxis],
np.full((5, 1), 0.01),
np.full((5, 1), -0.002)))
t_in = np.linspace(0, 2.0, num=5)
# Define the known result
yout_truth = np.array([[-0.001,
-0.00073,
0.039446,
0.0915387,
0.13195948]]).T
xout_truth = np.asarray([[0, 0],
[0.0012, 0.0005],
[0.40233, 0.00071],
[1.163368, -0.079327],
[2.2402985, -0.3035679]])
tout, yout, xout = dlsim((a, b, c, d, dt), u, t_in)
assert_array_almost_equal(yout_truth, yout)
assert_array_almost_equal(xout_truth, xout)
assert_array_almost_equal(t_in, tout)
# Make sure input with single-dimension doesn't raise error
dlsim((1, 2, 3), 4)
# Interpolated control - inputs should have different time steps
# than the discrete model uses internally
u_sparse = u[[0, 4], :]
t_sparse = np.asarray([0.0, 2.0])
tout, yout, xout = dlsim((a, b, c, d, dt), u_sparse, t_sparse)
assert_array_almost_equal(yout_truth, yout)
assert_array_almost_equal(xout_truth, xout)
assert len(tout) == len(yout)
# Transfer functions (assume dt = 0.5)
num = np.asarray([1.0, -0.1])
den = np.asarray([0.3, 1.0, 0.2])
yout_truth = np.array([[0.0,
0.0,
3.33333333333333,
-4.77777777777778,
23.0370370370370]]).T
# Assume use of the first column of the control input built earlier
tout, yout = dlsim((num, den, 0.5), u[:, 0], t_in)
assert_array_almost_equal(yout, yout_truth)
assert_array_almost_equal(t_in, tout)
# Retest the same with a 1-D input vector
uflat = np.asarray(u[:, 0])
uflat = uflat.reshape((5,))
tout, yout = dlsim((num, den, 0.5), uflat, t_in)
assert_array_almost_equal(yout, yout_truth)
assert_array_almost_equal(t_in, tout)
# zeros-poles-gain representation
zd = np.array([0.5, -0.5])
pd = np.array([1.j / np.sqrt(2), -1.j / np.sqrt(2)])
k = 1.0
yout_truth = np.array([[0.0, 1.0, 2.0, 2.25, 2.5]]).T
tout, yout = dlsim((zd, pd, k, 0.5), u[:, 0], t_in)
assert_array_almost_equal(yout, yout_truth)
assert_array_almost_equal(t_in, tout)
# Raise an error for continuous-time systems
system = lti([1], [1, 1])
assert_raises(AttributeError, dlsim, system, u)
def test_dstep(self):
a = np.asarray([[0.9, 0.1], [-0.2, 0.9]])
b = np.asarray([[0.4, 0.1, -0.1], [0.0, 0.05, 0.0]])
c = np.asarray([[0.1, 0.3]])
d = np.asarray([[0.0, -0.1, 0.0]])
dt = 0.5
# Because b.shape[1] == 3, dstep should result in a tuple of three
# result vectors
yout_step_truth = (np.asarray([0.0, 0.04, 0.052, 0.0404, 0.00956,
-0.036324, -0.093318, -0.15782348,
-0.226628324, -0.2969374948]),
np.asarray([-0.1, -0.075, -0.058, -0.04815,
-0.04453, -0.0461895, -0.0521812,
-0.061588875, -0.073549579,
-0.08727047595]),
np.asarray([0.0, -0.01, -0.013, -0.0101, -0.00239,
0.009081, 0.0233295, 0.03945587,
0.056657081, 0.0742343737]))
tout, yout = dstep((a, b, c, d, dt), n=10)
assert len(yout) == 3
for i in range(0, len(yout)):
assert yout[i].shape[0] == 10
assert_array_almost_equal(yout[i].flatten(), yout_step_truth[i])
# Check that the other two inputs (tf, zpk) will work as well
tfin = ([1.0], [1.0, 1.0], 0.5)
yout_tfstep = np.asarray([0.0, 1.0, 0.0])
tout, yout = dstep(tfin, n=3)
assert len(yout) == 1
assert_array_almost_equal(yout[0].flatten(), yout_tfstep)
zpkin = tf2zpk(tfin[0], tfin[1]) + (0.5,)
tout, yout = dstep(zpkin, n=3)
assert len(yout) == 1
assert_array_almost_equal(yout[0].flatten(), yout_tfstep)
# Raise an error for continuous-time systems
system = lti([1], [1, 1])
assert_raises(AttributeError, dstep, system)
def test_dimpulse(self):
a = np.asarray([[0.9, 0.1], [-0.2, 0.9]])
b = np.asarray([[0.4, 0.1, -0.1], [0.0, 0.05, 0.0]])
c = np.asarray([[0.1, 0.3]])
d = np.asarray([[0.0, -0.1, 0.0]])
dt = 0.5
# Because b.shape[1] == 3, dimpulse should result in a tuple of three
# result vectors
yout_imp_truth = (np.asarray([0.0, 0.04, 0.012, -0.0116, -0.03084,
-0.045884, -0.056994, -0.06450548,
-0.068804844, -0.0703091708]),
np.asarray([-0.1, 0.025, 0.017, 0.00985, 0.00362,
-0.0016595, -0.0059917, -0.009407675,
-0.011960704, -0.01372089695]),
np.asarray([0.0, -0.01, -0.003, 0.0029, 0.00771,
0.011471, 0.0142485, 0.01612637,
0.017201211, 0.0175772927]))
tout, yout = dimpulse((a, b, c, d, dt), n=10)
assert len(yout) == 3
for i in range(0, len(yout)):
assert yout[i].shape[0] == 10
assert_array_almost_equal(yout[i].flatten(), yout_imp_truth[i])
# Check that the other two inputs (tf, zpk) will work as well
tfin = ([1.0], [1.0, 1.0], 0.5)
yout_tfimpulse = np.asarray([0.0, 1.0, -1.0])
tout, yout = dimpulse(tfin, n=3)
assert len(yout) == 1
assert_array_almost_equal(yout[0].flatten(), yout_tfimpulse)
zpkin = tf2zpk(tfin[0], tfin[1]) + (0.5,)
tout, yout = dimpulse(zpkin, n=3)
assert len(yout) == 1
assert_array_almost_equal(yout[0].flatten(), yout_tfimpulse)
# Raise an error for continuous-time systems
system = lti([1], [1, 1])
assert_raises(AttributeError, dimpulse, system)
def test_dlsim_trivial(self):
a = np.array([[0.0]])
b = np.array([[0.0]])
c = np.array([[0.0]])
d = np.array([[0.0]])
n = 5
u = np.zeros(n).reshape(-1, 1)
tout, yout, xout = dlsim((a, b, c, d, 1), u)
xp_assert_equal(tout, np.arange(float(n)))
xp_assert_equal(yout, np.zeros((n, 1)))
xp_assert_equal(xout, np.zeros((n, 1)))
def test_dlsim_simple1d(self):
a = np.array([[0.5]])
b = np.array([[0.0]])
c = np.array([[1.0]])
d = np.array([[0.0]])
n = 5
u = np.zeros(n).reshape(-1, 1)
tout, yout, xout = dlsim((a, b, c, d, 1), u, x0=1)
xp_assert_equal(tout, np.arange(float(n)))
expected = (0.5 ** np.arange(float(n))).reshape(-1, 1)
xp_assert_equal(yout, expected)
xp_assert_equal(xout, expected)
def test_dlsim_simple2d(self):
lambda1 = 0.5
lambda2 = 0.25
a = np.array([[lambda1, 0.0],
[0.0, lambda2]])
b = np.array([[0.0],
[0.0]])
c = np.array([[1.0, 0.0],
[0.0, 1.0]])
d = np.array([[0.0],
[0.0]])
n = 5
u = np.zeros(n).reshape(-1, 1)
tout, yout, xout = dlsim((a, b, c, d, 1), u, x0=1)
xp_assert_equal(tout, np.arange(float(n)))
# The analytical solution:
expected = (np.array([lambda1, lambda2]) **
np.arange(float(n)).reshape(-1, 1))
xp_assert_equal(yout, expected)
xp_assert_equal(xout, expected)
def test_more_step_and_impulse(self):
lambda1 = 0.5
lambda2 = 0.75
a = np.array([[lambda1, 0.0],
[0.0, lambda2]])
b = np.array([[1.0, 0.0],
[0.0, 1.0]])
c = np.array([[1.0, 1.0]])
d = np.array([[0.0, 0.0]])
n = 10
# Check a step response.
ts, ys = dstep((a, b, c, d, 1), n=n)
# Create the exact step response.
stp0 = (1.0 / (1 - lambda1)) * (1.0 - lambda1 ** np.arange(n))
stp1 = (1.0 / (1 - lambda2)) * (1.0 - lambda2 ** np.arange(n))
xp_assert_close(ys[0][:, 0], stp0)
xp_assert_close(ys[1][:, 0], stp1)
# Check an impulse response with an initial condition.
x0 = np.array([1.0, 1.0])
ti, yi = dimpulse((a, b, c, d, 1), n=n, x0=x0)
# Create the exact impulse response.
imp = (np.array([lambda1, lambda2]) **
np.arange(-1, n + 1).reshape(-1, 1))
imp[0, :] = 0.0
# Analytical solution to impulse response
y0 = imp[:n, 0] + np.dot(imp[1:n + 1, :], x0)
y1 = imp[:n, 1] + np.dot(imp[1:n + 1, :], x0)
xp_assert_close(yi[0][:, 0], y0)
xp_assert_close(yi[1][:, 0], y1)
# Check that dt=0.1, n=3 gives 3 time values.
system = ([1.0], [1.0, -0.5], 0.1)
t, (y,) = dstep(system, n=3)
xp_assert_close(t, [0, 0.1, 0.2])
xp_assert_equal(y.T, [[0, 1.0, 1.5]])
t, (y,) = dimpulse(system, n=3)
xp_assert_close(t, [0, 0.1, 0.2])
xp_assert_equal(y.T, [[0, 1, 0.5]])
class TestDlti:
def test_dlti_instantiation(self):
# Test that lti can be instantiated.
dt = 0.05
# TransferFunction
s = dlti([1], [-1], dt=dt)
assert isinstance(s, TransferFunction)
assert isinstance(s, dlti)
assert not isinstance(s, lti)
assert s.dt == dt
# ZerosPolesGain
s = dlti(np.array([]), np.array([-1]), 1, dt=dt)
assert isinstance(s, ZerosPolesGain)
assert isinstance(s, dlti)
assert not isinstance(s, lti)
assert s.dt == dt
# StateSpace
s = dlti([1], [-1], 1, 3, dt=dt)
assert isinstance(s, StateSpace)
assert isinstance(s, dlti)
assert not isinstance(s, lti)
assert s.dt == dt
# Number of inputs
assert_raises(ValueError, dlti, 1)
assert_raises(ValueError, dlti, 1, 1, 1, 1, 1)
class TestStateSpaceDisc:
def test_initialization(self):
# Check that all initializations work
dt = 0.05
StateSpace(1, 1, 1, 1, dt=dt)
StateSpace([1], [2], [3], [4], dt=dt)
StateSpace(np.array([[1, 2], [3, 4]]), np.array([[1], [2]]),
np.array([[1, 0]]), np.array([[0]]), dt=dt)
StateSpace(1, 1, 1, 1, dt=True)
def test_conversion(self):
# Check the conversion functions
s = StateSpace(1, 2, 3, 4, dt=0.05)
assert isinstance(s.to_ss(), StateSpace)
assert isinstance(s.to_tf(), TransferFunction)
assert isinstance(s.to_zpk(), ZerosPolesGain)
# Make sure copies work
assert StateSpace(s) is not s
assert s.to_ss() is not s
def test_properties(self):
# Test setters/getters for cross class properties.
# This implicitly tests to_tf() and to_zpk()
# Getters
s = StateSpace(1, 1, 1, 1, dt=0.05)
xp_assert_equal(s.poles, [1.])
xp_assert_equal(s.zeros, [0.])
class TestTransferFunction:
def test_initialization(self):
# Check that all initializations work
dt = 0.05
TransferFunction(1, 1, dt=dt)
TransferFunction([1], [2], dt=dt)
TransferFunction(np.array([1]), np.array([2]), dt=dt)
TransferFunction(1, 1, dt=True)
def test_conversion(self):
# Check the conversion functions
s = TransferFunction([1, 0], [1, -1], dt=0.05)
assert isinstance(s.to_ss(), StateSpace)
assert isinstance(s.to_tf(), TransferFunction)
assert isinstance(s.to_zpk(), ZerosPolesGain)
# Make sure copies work
assert TransferFunction(s) is not s
assert s.to_tf() is not s
def test_properties(self):
# Test setters/getters for cross class properties.
# This implicitly tests to_ss() and to_zpk()
# Getters
s = TransferFunction([1, 0], [1, -1], dt=0.05)
xp_assert_equal(s.poles, [1.])
xp_assert_equal(s.zeros, [0.])
class TestZerosPolesGain:
def test_initialization(self):
# Check that all initializations work
dt = 0.05
ZerosPolesGain(1, 1, 1, dt=dt)
ZerosPolesGain([1], [2], 1, dt=dt)
ZerosPolesGain(np.array([1]), np.array([2]), 1, dt=dt)
ZerosPolesGain(1, 1, 1, dt=True)
def test_conversion(self):
# Check the conversion functions
s = ZerosPolesGain(1, 2, 3, dt=0.05)
assert isinstance(s.to_ss(), StateSpace)
assert isinstance(s.to_tf(), TransferFunction)
assert isinstance(s.to_zpk(), ZerosPolesGain)
# Make sure copies work
assert ZerosPolesGain(s) is not s
assert s.to_zpk() is not s
class Test_dfreqresp:
def test_manual(self):
# Test dfreqresp() real part calculation (manual sanity check).
# 1st order low-pass filter: H(z) = 1 / (z - 0.2),
system = TransferFunction(1, [1, -0.2], dt=0.1)
w = [0.1, 1, 10]
w, H = dfreqresp(system, w=w)
# test real
expected_re = [1.2383, 0.4130, -0.7553]
assert_almost_equal(H.real, expected_re, decimal=4)
# test imag
expected_im = [-0.1555, -1.0214, 0.3955]
assert_almost_equal(H.imag, expected_im, decimal=4)
def test_auto(self):
# Test dfreqresp() real part calculation.
# 1st order low-pass filter: H(z) = 1 / (z - 0.2),
system = TransferFunction(1, [1, -0.2], dt=0.1)
w = [0.1, 1, 10, 100]
w, H = dfreqresp(system, w=w)
jw = np.exp(w * 1j)
y = np.polyval(system.num, jw) / np.polyval(system.den, jw)
# test real
expected_re = y.real
assert_almost_equal(H.real, expected_re)
# test imag
expected_im = y.imag
assert_almost_equal(H.imag, expected_im)
def test_freq_range(self):
# Test that freqresp() finds a reasonable frequency range.
# 1st order low-pass filter: H(z) = 1 / (z - 0.2),
# Expected range is from 0.01 to 10.
system = TransferFunction(1, [1, -0.2], dt=0.1)
n = 10
expected_w = np.linspace(0, np.pi, 10, endpoint=False)
w, H = dfreqresp(system, n=n)
assert_almost_equal(w, expected_w)
def test_pole_one(self):
# Test that freqresp() doesn't fail on a system with a pole at 0.
# integrator, pole at zero: H(s) = 1 / s
system = TransferFunction([1], [1, -1], dt=0.1)
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, message="divide by zero")
sup.filter(RuntimeWarning, message="invalid value encountered")
w, H = dfreqresp(system, n=2)
assert w[0] == 0. # a fail would give not-a-number
def test_error(self):
# Raise an error for continuous-time systems
system = lti([1], [1, 1])
assert_raises(AttributeError, dfreqresp, system)
def test_from_state_space(self):
# H(z) = 2 / z^3 - 0.5 * z^2
system_TF = dlti([2], [1, -0.5, 0, 0])
A = np.array([[0.5, 0, 0],
[1, 0, 0],
[0, 1, 0]])
B = np.array([[1, 0, 0]]).T
C = np.array([[0, 0, 2]])
D = 0
system_SS = dlti(A, B, C, D)
w = 10.0**np.arange(-3,0,.5)
with suppress_warnings() as sup:
sup.filter(BadCoefficients)
w1, H1 = dfreqresp(system_TF, w=w)
w2, H2 = dfreqresp(system_SS, w=w)
assert_almost_equal(H1, H2)
def test_from_zpk(self):
# 1st order low-pass filter: H(s) = 0.3 / (z - 0.2),
system_ZPK = dlti([],[0.2],0.3)
system_TF = dlti(0.3, [1, -0.2])
w = [0.1, 1, 10, 100]
w1, H1 = dfreqresp(system_ZPK, w=w)
w2, H2 = dfreqresp(system_TF, w=w)
assert_almost_equal(H1, H2)
class Test_bode:
def test_manual(self):
# Test bode() magnitude calculation (manual sanity check).
# 1st order low-pass filter: H(s) = 0.3 / (z - 0.2),
dt = 0.1
system = TransferFunction(0.3, [1, -0.2], dt=dt)
w = [0.1, 0.5, 1, np.pi]
w2, mag, phase = dbode(system, w=w)
# Test mag
expected_mag = [-8.5329, -8.8396, -9.6162, -12.0412]
assert_almost_equal(mag, expected_mag, decimal=4)
# Test phase
expected_phase = [-7.1575, -35.2814, -67.9809, -180.0000]
assert_almost_equal(phase, expected_phase, decimal=4)
# Test frequency
xp_assert_equal(np.array(w) / dt, w2)
def test_auto(self):
# Test bode() magnitude calculation.
# 1st order low-pass filter: H(s) = 0.3 / (z - 0.2),
system = TransferFunction(0.3, [1, -0.2], dt=0.1)
w = np.array([0.1, 0.5, 1, np.pi])
w2, mag, phase = dbode(system, w=w)
jw = np.exp(w * 1j)
y = np.polyval(system.num, jw) / np.polyval(system.den, jw)
# Test mag
expected_mag = 20.0 * np.log10(abs(y))
assert_almost_equal(mag, expected_mag)
# Test phase
expected_phase = np.rad2deg(np.angle(y))
assert_almost_equal(phase, expected_phase)
def test_range(self):
# Test that bode() finds a reasonable frequency range.
# 1st order low-pass filter: H(s) = 0.3 / (z - 0.2),
dt = 0.1
system = TransferFunction(0.3, [1, -0.2], dt=0.1)
n = 10
# Expected range is from 0.01 to 10.
expected_w = np.linspace(0, np.pi, n, endpoint=False) / dt
w, mag, phase = dbode(system, n=n)
assert_almost_equal(w, expected_w)
def test_pole_one(self):
# Test that freqresp() doesn't fail on a system with a pole at 0.
# integrator, pole at zero: H(s) = 1 / s
system = TransferFunction([1], [1, -1], dt=0.1)
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, message="divide by zero")
sup.filter(RuntimeWarning, message="invalid value encountered")
w, mag, phase = dbode(system, n=2)
assert w[0] == 0. # a fail would give not-a-number
def test_imaginary(self):
# bode() should not fail on a system with pure imaginary poles.
# The test passes if bode doesn't raise an exception.
system = TransferFunction([1], [1, 0, 100], dt=0.1)
dbode(system, n=2)
def test_error(self):
# Raise an error for continuous-time systems
system = lti([1], [1, 1])
assert_raises(AttributeError, dbode, system)
class TestTransferFunctionZConversion:
"""Test private conversions between 'z' and 'z**-1' polynomials."""
def test_full(self):
# Numerator and denominator same order
num = np.asarray([2.0, 3, 4])
den = np.asarray([5.0, 6, 7])
num2, den2 = TransferFunction._z_to_zinv(num, den)
xp_assert_equal(num, num2)
xp_assert_equal(den, den2)
num2, den2 = TransferFunction._zinv_to_z(num, den)
xp_assert_equal(num, num2)
xp_assert_equal(den, den2)
def test_numerator(self):
# Numerator lower order than denominator
num = np.asarray([2.0, 3])
den = np.asarray([50, 6, 7])
num2, den2 = TransferFunction._z_to_zinv(num, den)
xp_assert_equal([0.0, 2, 3], num2)
xp_assert_equal(den, den2)
num2, den2 = TransferFunction._zinv_to_z(num, den)
xp_assert_equal([2.0, 3, 0], num2)
xp_assert_equal(den, den2)
def test_denominator(self):
# Numerator higher order than denominator
num = np.asarray([2., 3, 4])
den = np.asarray([5.0, 6])
num2, den2 = TransferFunction._z_to_zinv(num, den)
xp_assert_equal(num, num2)
xp_assert_equal([0.0, 5, 6], den2)
num2, den2 = TransferFunction._zinv_to_z(num, den)
xp_assert_equal(num, num2)
xp_assert_equal([5.0, 6, 0], den2)

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,851 @@
import math
import numpy as np
from numpy.testing import assert_warns
from pytest import raises as assert_raises
import pytest
import scipy._lib.array_api_extra as xpx
from scipy._lib._array_api import (
xp_assert_close, xp_assert_equal, assert_almost_equal, assert_array_almost_equal,
array_namespace, xp_default_dtype
)
from scipy.fft import fft, fft2
from scipy.signal import (kaiser_beta, kaiser_atten, kaiserord,
firwin, firwin2, freqz, remez, firls, minimum_phase, convolve2d, firwin_2d
)
skip_xp_backends = pytest.mark.skip_xp_backends
xfail_xp_backends = pytest.mark.xfail_xp_backends
def test_kaiser_beta():
b = kaiser_beta(58.7)
assert_almost_equal(b, 0.1102 * 50.0)
b = kaiser_beta(22.0)
assert_almost_equal(b, 0.5842 + 0.07886)
b = kaiser_beta(21.0)
assert b == 0.0
b = kaiser_beta(10.0)
assert b == 0.0
def test_kaiser_atten():
a = kaiser_atten(1, 1.0)
assert a == 7.95
a = kaiser_atten(2, 1/np.pi)
assert a == 2.285 + 7.95
def test_kaiserord():
assert_raises(ValueError, kaiserord, 1.0, 1.0)
numtaps, beta = kaiserord(2.285 + 7.95 - 0.001, 1/np.pi)
assert (numtaps, beta) == (2, 0.0)
class TestFirwin:
def check_response(self, h, expected_response, tol=.05):
xp = array_namespace(h)
N = h.shape[0]
alpha = 0.5 * (N-1)
m = xp.arange(0, N) - alpha # time indices of taps
for freq, expected in expected_response:
actual = abs(xp.sum(h * xp.exp(-1j * xp.pi * m * freq)))
mse = abs(actual - expected)**2
assert mse < tol, f'response not as expected, mse={mse:g} > {tol:g}'
def test_response(self, xp):
N = 51
f = .5
# increase length just to try even/odd
h = firwin(N, f) # low-pass from 0 to f
self.check_response(h, [(.25,1), (.75,0)])
h = firwin(N+1, f, window='nuttall') # specific window
self.check_response(h, [(.25,1), (.75,0)])
h = firwin(N+2, f, pass_zero=False) # stop from 0 to f --> high-pass
self.check_response(h, [(.25,0), (.75,1)])
f1, f2, f3, f4 = .2, .4, .6, .8
h = firwin(N+3, [f1, f2], pass_zero=False) # band-pass filter
self.check_response(h, [(.1,0), (.3,1), (.5,0)])
h = firwin(N+4, [f1, f2]) # band-stop filter
self.check_response(h, [(.1,1), (.3,0), (.5,1)])
h = firwin(N+5, [f1, f2, f3, f4], pass_zero=False, scale=False)
self.check_response(h, [(.1,0), (.3,1), (.5,0), (.7,1), (.9,0)])
h = firwin(N+6, [f1, f2, f3, f4]) # multiband filter
self.check_response(h, [(.1,1), (.3,0), (.5,1), (.7,0), (.9,1)])
h = firwin(N+7, 0.1, width=.03) # low-pass
self.check_response(h, [(.05,1), (.75,0)])
h = firwin(N+8, 0.1, pass_zero=False) # high-pass
self.check_response(h, [(.05,0), (.75,1)])
def mse(self, h, bands):
"""Compute mean squared error versus ideal response across frequency
band.
h -- coefficients
bands -- list of (left, right) tuples relative to 1==Nyquist of
passbands
"""
w, H = freqz(h, worN=1024)
f = w/np.pi
passIndicator = np.zeros(len(w), bool)
for left, right in bands:
passIndicator |= (f >= left) & (f < right)
Hideal = np.where(passIndicator, 1, 0)
mse = np.mean(abs(abs(H)-Hideal)**2)
return mse
def test_scaling(self, xp):
"""
For one lowpass, bandpass, and highpass example filter, this test
checks two things:
- the mean squared error over the frequency domain of the unscaled
filter is smaller than the scaled filter (true for rectangular
window)
- the response of the scaled filter is exactly unity at the center
of the first passband
"""
N = 11
cases = [
([.5], True, (0, 1)),
([0.2, .6], False, (.4, 1)),
([.5], False, (1, 1)),
]
for cutoff, pass_zero, expected_response in cases:
h = firwin(N, cutoff, scale=False, pass_zero=pass_zero, window='ones')
hs = firwin(N, cutoff, scale=True, pass_zero=pass_zero, window='ones')
if len(cutoff) == 1:
if pass_zero:
cutoff = [0] + cutoff
else:
cutoff = cutoff + [1]
msg = 'least squares violation'
assert self.mse(h, [cutoff]) < self.mse(hs, [cutoff]), msg
self.check_response(hs, [expected_response], 1e-12)
def test_fs_validation(self):
with pytest.raises(ValueError, match="Sampling.*single scalar"):
firwin(51, .5, fs=np.array([10, 20]))
class TestFirWinMore:
"""Different author, different style, different tests..."""
def test_lowpass(self, xp):
width = 0.04
ntaps, beta = kaiserord(120, width)
cutoff = xp.asarray(0.5)
kwargs = dict(cutoff=cutoff, window=('kaiser', beta), scale=False)
taps = firwin(ntaps, **kwargs)
# Check the symmetry of taps.
assert_array_almost_equal(taps[:ntaps//2], xp.flip(taps)[:ntaps//2])
# Check the gain at a few samples where
# we know it should be approximately 0 or 1.
freq_samples = xp.asarray([0.0, 0.25, 0.5-width/2, 0.5+width/2, 0.75, 1.0])
freqs, response = freqz(taps, worN=xp.pi*freq_samples)
assert_array_almost_equal(
xp.abs(response),
xp.asarray([1.0, 1.0, 1.0, 0.0, 0.0, 0.0]), decimal=5
)
taps_str = firwin(ntaps, pass_zero='lowpass', **kwargs)
xp_assert_close(taps, taps_str)
def test_highpass(self, xp):
width = 0.04
ntaps, beta = kaiserord(120, width)
# Ensure that ntaps is odd.
ntaps |= 1
cutoff = xp.asarray(0.5)
kwargs = dict(cutoff=cutoff, window=('kaiser', beta), scale=False)
taps = firwin(ntaps, pass_zero=False, **kwargs)
# Check the symmetry of taps.
assert_array_almost_equal(taps[:ntaps//2], xp.flip(taps)[:ntaps//2])
# Check the gain at a few samples where
# we know it should be approximately 0 or 1.
freq_samples = xp.asarray([0.0, 0.25, 0.5 - width/2, 0.5 + width/2, 0.75, 1.0])
freqs, response = freqz(taps, worN=np.pi*freq_samples)
assert_array_almost_equal(xp.abs(response),
xp.asarray([0.0, 0.0, 0.0, 1.0, 1.0, 1.0]), decimal=5)
taps_str = firwin(ntaps, pass_zero='highpass', **kwargs)
xp_assert_close(taps, taps_str)
def test_bandpass(self, xp):
width = 0.04
ntaps, beta = kaiserord(120, width)
kwargs = dict(
cutoff=xp.asarray([0.3, 0.7]), window=('kaiser', beta), scale=False
)
taps = firwin(ntaps, pass_zero=False, **kwargs)
# Check the symmetry of taps.
assert_array_almost_equal(taps[:ntaps//2], xp.flip(taps)[:ntaps//2])
# Check the gain at a few samples where
# we know it should be approximately 0 or 1.
freq_samples = xp.asarray([0.0, 0.2, 0.3 - width/2, 0.3 + width/2, 0.5,
0.7 - width/2, 0.7 + width/2, 0.8, 1.0])
freqs, response = freqz(taps, worN=np.pi*freq_samples)
assert_array_almost_equal(xp.abs(response),
xp.asarray([0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0]), decimal=5)
taps_str = firwin(ntaps, pass_zero='bandpass', **kwargs)
xp_assert_close(taps, taps_str)
def test_bandstop_multi(self, xp):
width = 0.04
ntaps, beta = kaiserord(120, width)
kwargs = dict(cutoff=xp.asarray([0.2, 0.5, 0.8]), window=('kaiser', beta),
scale=False)
taps = firwin(ntaps, **kwargs)
# Check the symmetry of taps.
assert_array_almost_equal(taps[:ntaps//2], xp.flip(taps)[:ntaps//2])
# Check the gain at a few samples where
# we know it should be approximately 0 or 1.
freq_samples = xp.asarray([0.0, 0.1, 0.2 - width/2, 0.2 + width/2, 0.35,
0.5 - width/2, 0.5 + width/2, 0.65,
0.8 - width/2, 0.8 + width/2, 0.9, 1.0])
freqs, response = freqz(taps, worN=np.pi*freq_samples)
assert_array_almost_equal(
xp.abs(response),
xp.asarray([1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0]),
decimal=5
)
taps_str = firwin(ntaps, pass_zero='bandstop', **kwargs)
xp_assert_close(taps, taps_str)
def test_fs_nyq(self, xp):
"""Test the fs and nyq keywords."""
nyquist = 1000
width = 40.0
relative_width = width/nyquist
ntaps, beta = kaiserord(120, relative_width)
taps = firwin(ntaps, cutoff=xp.asarray([300, 700]), window=('kaiser', beta),
pass_zero=False, scale=False, fs=2*nyquist)
# Check the symmetry of taps.
assert_array_almost_equal(taps[:ntaps//2], xp.flip(taps)[:ntaps//2])
# Check the gain at a few samples where
# we know it should be approximately 0 or 1.
freq_samples = xp.asarray([0.0, 200, 300 - width/2, 300 + width/2, 500,
700 - width/2, 700 + width/2, 800, 1000])
freqs, response = freqz(taps, worN=np.pi*freq_samples/nyquist)
assert_array_almost_equal(xp.abs(response),
xp.asarray([0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0]), decimal=5)
def test_array_cutoff(self, xp):
taps = firwin(3, xp.asarray([.1, .2]))
# smoke test against the value computed by scipy==1.5.2
xp_assert_close(
taps, xp.asarray([-0.00801395, 1.0160279, -0.00801395]), atol=1e-8
)
def test_bad_cutoff(self):
"""Test that invalid cutoff argument raises ValueError."""
# cutoff values must be greater than 0 and less than 1.
assert_raises(ValueError, firwin, 99, -0.5)
assert_raises(ValueError, firwin, 99, 1.5)
# Don't allow 0 or 1 in cutoff.
assert_raises(ValueError, firwin, 99, [0, 0.5])
assert_raises(ValueError, firwin, 99, [0.5, 1])
# cutoff values must be strictly increasing.
assert_raises(ValueError, firwin, 99, [0.1, 0.5, 0.2])
assert_raises(ValueError, firwin, 99, [0.1, 0.5, 0.5])
# Must have at least one cutoff value.
assert_raises(ValueError, firwin, 99, [])
# 2D array not allowed.
assert_raises(ValueError, firwin, 99, [[0.1, 0.2],[0.3, 0.4]])
# cutoff values must be less than nyq.
assert_raises(ValueError, firwin, 99, 50.0, fs=80)
assert_raises(ValueError, firwin, 99, [10, 20, 30], fs=50)
def test_even_highpass_raises_value_error(self):
"""Test that attempt to create a highpass filter with an even number
of taps raises a ValueError exception."""
assert_raises(ValueError, firwin, 40, 0.5, pass_zero=False)
assert_raises(ValueError, firwin, 40, [.25, 0.5])
def test_bad_pass_zero(self):
"""Test degenerate pass_zero cases."""
with assert_raises(ValueError, match="^Parameter pass_zero='foo' not in "):
firwin(41, 0.5, pass_zero='foo')
with assert_raises(ValueError, match="^Parameter pass_zero=1.0 not in "):
firwin(41, 0.5, pass_zero=1.)
for pass_zero in ('lowpass', 'highpass'):
with assert_raises(ValueError, match='cutoff must have one'):
firwin(41, [0.5, 0.6], pass_zero=pass_zero)
for pass_zero in ('bandpass', 'bandstop'):
with assert_raises(ValueError, match='must have at least two'):
firwin(41, [0.5], pass_zero=pass_zero)
def test_fs_validation(self):
with pytest.raises(ValueError, match="Sampling.*single scalar"):
firwin2(51, .5, 1, fs=np.array([10, 20]))
@skip_xp_backends(cpu_only=True, reason="firwin2 uses np.interp")
class TestFirwin2:
def test_invalid_args(self):
# `freq` and `gain` have different lengths.
with assert_raises(ValueError, match='must be of same length'):
firwin2(50, [0, 0.5, 1], [0.0, 1.0])
# `nfreqs` is less than `ntaps`.
with assert_raises(ValueError, match='ntaps must be less than nfreqs'):
firwin2(50, [0, 0.5, 1], [0.0, 1.0, 1.0], nfreqs=33)
# Decreasing value in `freq`
with assert_raises(ValueError, match='must be nondecreasing'):
firwin2(50, [0, 0.5, 0.4, 1.0], [0, .25, .5, 1.0])
# Value in `freq` repeated more than once.
with assert_raises(ValueError, match='must not occur more than twice'):
firwin2(50, [0, .1, .1, .1, 1.0], [0.0, 0.5, 0.75, 1.0, 1.0])
# `freq` does not start at 0.0.
with assert_raises(ValueError, match='start with 0'):
firwin2(50, [0.5, 1.0], [0.0, 1.0])
# `freq` does not end at fs/2.
with assert_raises(ValueError, match='end with fs/2'):
firwin2(50, [0.0, 0.5], [0.0, 1.0])
# Value 0 is repeated in `freq`
with assert_raises(ValueError, match='0 must not be repeated'):
firwin2(50, [0.0, 0.0, 0.5, 1.0], [1.0, 1.0, 0.0, 0.0])
# Value fs/2 is repeated in `freq`
with assert_raises(ValueError, match='fs/2 must not be repeated'):
firwin2(50, [0.0, 0.5, 1.0, 1.0], [1.0, 1.0, 0.0, 0.0])
# Value in `freq` that is too close to a repeated number
with assert_raises(ValueError, match='cannot contain numbers '
'that are too close'):
firwin2(50, [0.0, 0.5 - np.finfo(float).eps * 0.5, 0.5, 0.5, 1.0],
[1.0, 1.0, 1.0, 0.0, 0.0])
# Type II filter, but the gain at nyquist frequency is not zero.
with assert_raises(ValueError, match='Type II filter'):
firwin2(16, [0.0, 0.5, 1.0], [0.0, 1.0, 1.0])
# Type III filter, but the gains at nyquist and zero rate are not zero.
with assert_raises(ValueError, match='Type III filter'):
firwin2(17, [0.0, 0.5, 1.0], [0.0, 1.0, 1.0], antisymmetric=True)
with assert_raises(ValueError, match='Type III filter'):
firwin2(17, [0.0, 0.5, 1.0], [1.0, 1.0, 0.0], antisymmetric=True)
with assert_raises(ValueError, match='Type III filter'):
firwin2(17, [0.0, 0.5, 1.0], [1.0, 1.0, 1.0], antisymmetric=True)
# Type IV filter, but the gain at zero rate is not zero.
with assert_raises(ValueError, match='Type IV filter'):
firwin2(16, [0.0, 0.5, 1.0], [1.0, 1.0, 0.0], antisymmetric=True)
def test01(self, xp):
width = 0.04
beta = 12.0
ntaps = 400
# Filter is 1 from w=0 to w=0.5, then decreases linearly from 1 to 0 as w
# increases from w=0.5 to w=1 (w=1 is the Nyquist frequency).
freq = xp.asarray([0.0, 0.5, 1.0])
gain = xp.asarray([1.0, 1.0, 0.0])
taps = firwin2(ntaps, freq, gain, window=('kaiser', beta))
freq_samples = xp.asarray([0.0, 0.25, 0.5 - width/2, 0.5 + width/2,
0.75, 1.0 - width/2])
freqs, response = freqz(taps, worN=np.pi*freq_samples)
freqs, response = xp.asarray(freqs), xp.asarray(response)
assert_array_almost_equal(
xp.abs(response),
xp.asarray([1.0, 1.0, 1.0, 1.0 - width, 0.5, width]), decimal=5
)
@skip_xp_backends("jax.numpy", reason="immutable arrays")
def test02(self, xp):
width = 0.04
beta = 12.0
# ntaps must be odd for positive gain at Nyquist.
ntaps = 401
# An ideal highpass filter.
freq = xp.asarray([0.0, 0.5, 0.5, 1.0])
gain = xp.asarray([0.0, 0.0, 1.0, 1.0])
taps = firwin2(ntaps, freq, gain, window=('kaiser', beta))
freq_samples = np.array([0.0, 0.25, 0.5 - width, 0.5 + width, 0.75, 1.0])
freqs, response = freqz(taps, worN=np.pi*freq_samples)
freqs, response = xp.asarray(freqs), xp.asarray(response)
assert_array_almost_equal(
xp.abs(response),
xp.asarray([0.0, 0.0, 0.0, 1.0, 1.0, 1.0]), decimal=5
)
@skip_xp_backends("jax.numpy", reason="immutable arrays")
def test03(self, xp):
width = 0.02
ntaps, beta = kaiserord(120, width)
# ntaps must be odd for positive gain at Nyquist.
ntaps = int(ntaps) | 1
freq = xp.asarray([0.0, 0.4, 0.4, 0.5, 0.5, 1.0])
gain = xp.asarray([1.0, 1.0, 0.0, 0.0, 1.0, 1.0])
taps = firwin2(ntaps, freq, gain, window=('kaiser', beta))
freq_samples = np.array([0.0, 0.4 - width, 0.4 + width, 0.45,
0.5 - width, 0.5 + width, 0.75, 1.0])
freqs, response = freqz(taps, worN=np.pi*freq_samples)
freqs, response = xp.asarray(freqs), xp.asarray(response)
assert_array_almost_equal(
xp.abs(response),
xp.asarray([1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0]), decimal=5
)
@skip_xp_backends("jax.numpy", reason="immutable arrays")
def test04(self, xp):
"""Test firwin2 when window=None."""
ntaps = 5
# Ideal lowpass: gain is 1 on [0,0.5], and 0 on [0.5, 1.0]
freq = xp.asarray([0.0, 0.5, 0.5, 1.0])
gain = xp.asarray([1.0, 1.0, 0.0, 0.0])
taps = firwin2(ntaps, freq, gain, window=None, nfreqs=8193)
alpha = 0.5 * (ntaps - 1)
m = xp.arange(0, ntaps, dtype=freq.dtype) - alpha
h = 0.5 * xpx.sinc(0.5 * m)
assert_array_almost_equal(h, taps)
def test05(self, xp):
"""Test firwin2 for calculating Type IV filters"""
ntaps = 1500
freq = xp.asarray([0.0, 1.0])
gain = xp.asarray([0.0, 1.0])
taps = firwin2(ntaps, freq, gain, window=None, antisymmetric=True)
flip = array_namespace(freq).flip
dec = {'decimal': 4.5} if xp_default_dtype(xp) == xp.float32 else {}
assert_array_almost_equal(taps[: ntaps // 2], flip(-taps[ntaps // 2:]), **dec)
freqs, response = freqz(np.asarray(taps), worN=2048) # XXX convert freqz
assert_array_almost_equal(abs(xp.asarray(response)),
xp.asarray(freqs / np.pi), decimal=4)
@skip_xp_backends("jax.numpy", reason="immutable arrays")
def test06(self, xp):
"""Test firwin2 for calculating Type III filters"""
ntaps = 1501
freq = xp.asarray([0.0, 0.5, 0.55, 1.0])
gain = xp.asarray([0.0, 0.5, 0.0, 0.0])
taps = firwin2(ntaps, freq, gain, window=None, antisymmetric=True)
assert taps[ntaps // 2] == 0.0
flip = array_namespace(freq).flip
dec = {'decimal': 4.5} if xp_default_dtype(xp) == xp.float32 else {}
assert_array_almost_equal(taps[: ntaps // 2],
flip(-taps[ntaps // 2 + 1:]), **dec
)
freqs, response1 = freqz(np.asarray(taps), worN=2048) # XXX convert freqz
response1 = xp.asarray(response1)
response2 = xp.asarray(
np.interp(np.asarray(freqs) / np.pi, np.asarray(freq), np.asarray(gain))
)
assert_array_almost_equal(abs(response1), response2, decimal=3)
def test_fs_nyq(self, xp):
taps1 = firwin2(80, xp.asarray([0.0, 0.5, 1.0]), xp.asarray([1.0, 1.0, 0.0]))
taps2 = firwin2(80, xp.asarray([0.0, 30.0, 60.0]), xp.asarray([1.0, 1.0, 0.0]),
fs=120.0)
assert_array_almost_equal(taps1, taps2)
def test_tuple(self):
taps1 = firwin2(150, (0.0, 0.5, 0.5, 1.0), (1.0, 1.0, 0.0, 0.0))
taps2 = firwin2(150, [0.0, 0.5, 0.5, 1.0], [1.0, 1.0, 0.0, 0.0])
assert_array_almost_equal(taps1, taps2)
@skip_xp_backends("jax.numpy", reason="immutable arrays")
def test_input_modyfication(self, xp):
freq1 = xp.asarray([0.0, 0.5, 0.5, 1.0])
freq2 = xp.asarray(freq1)
firwin2(80, freq1, xp.asarray([1.0, 1.0, 0.0, 0.0]))
xp_assert_equal(freq1, freq2)
@skip_xp_backends(cpu_only=True)
class TestRemez:
def test_bad_args(self):
assert_raises(ValueError, remez, 11, [0.1, 0.4], [1], type='pooka')
def test_hilbert(self):
N = 11 # number of taps in the filter
a = 0.1 # width of the transition band
# design an unity gain hilbert bandpass filter from w to 0.5-w
h = remez(11, [a, 0.5-a], [1], type='hilbert')
# make sure the filter has correct # of taps
assert len(h) == N, "Number of Taps"
# make sure it is type III (anti-symmetric tap coefficients)
assert_array_almost_equal(h[:(N-1)//2], -h[:-(N-1)//2-1:-1])
# Since the requested response is symmetric, all even coefficients
# should be zero (or in this case really small)
assert (abs(h[1::2]) < 1e-15).all(), "Even Coefficients Equal Zero"
# now check the frequency response
w, H = freqz(h, 1)
f = w/2/np.pi
Hmag = abs(H)
# should have a zero at 0 and pi (in this case close to zero)
assert (Hmag[[0, -1]] < 0.02).all(), "Zero at zero and pi"
# check that the pass band is close to unity
idx = np.logical_and(f > a, f < 0.5-a)
assert (abs(Hmag[idx] - 1) < 0.015).all(), "Pass Band Close To Unity"
def test_compare(self, xp):
# test comparison to MATLAB
k = [0.024590270518440, -0.041314581814658, -0.075943803756711,
-0.003530911231040, 0.193140296954975, 0.373400753484939,
0.373400753484939, 0.193140296954975, -0.003530911231040,
-0.075943803756711, -0.041314581814658, 0.024590270518440]
h = remez(12, xp.asarray([0, 0.3, 0.5, 1]), xp.asarray([1, 0]), fs=2.)
atol_arg = {'atol': 1e-8} if xp_default_dtype(xp) == xp.float32 else {}
xp_assert_close(h, xp.asarray(k, dtype=xp.float64), **atol_arg)
h = [-0.038976016082299, 0.018704846485491, -0.014644062687875,
0.002879152556419, 0.016849978528150, -0.043276706138248,
0.073641298245579, -0.103908158578635, 0.129770906801075,
-0.147163447297124, 0.153302248456347, -0.147163447297124,
0.129770906801075, -0.103908158578635, 0.073641298245579,
-0.043276706138248, 0.016849978528150, 0.002879152556419,
-0.014644062687875, 0.018704846485491, -0.038976016082299]
atol_arg = {'atol': 3e-8} if xp_default_dtype(xp) == xp.float32 else {}
xp_assert_close(
remez(21, xp.asarray([0, 0.8, 0.9, 1]), xp.asarray([0, 1]), fs=2.),
xp.asarray(h, dtype=xp.float64), **atol_arg
)
def test_fs_validation(self):
with pytest.raises(ValueError, match="Sampling.*single scalar"):
remez(11, .1, 1, fs=np.array([10, 20]))
def test_gh_23266(self, xp):
bands = xp.asarray([0.0, 0.2, 0.3, 0.5])
desired = xp.asarray([1.0, 0.0])
weight = xp.asarray([1.0, 2.0])
remez(21, bands, desired, weight=weight)
@skip_xp_backends(cpu_only=True, reason="lstsq")
class TestFirls:
def test_bad_args(self):
# even numtaps
assert_raises(ValueError, firls, 10, [0.1, 0.2], [0, 0])
# odd bands
assert_raises(ValueError, firls, 11, [0.1, 0.2, 0.4], [0, 0, 0])
# len(bands) != len(desired)
assert_raises(ValueError, firls, 11, [0.1, 0.2, 0.3, 0.4], [0, 0, 0])
# non-monotonic bands
assert_raises(ValueError, firls, 11, [0.2, 0.1], [0, 0])
assert_raises(ValueError, firls, 11, [0.1, 0.2, 0.3, 0.3], [0] * 4)
assert_raises(ValueError, firls, 11, [0.3, 0.4, 0.1, 0.2], [0] * 4)
assert_raises(ValueError, firls, 11, [0.1, 0.3, 0.2, 0.4], [0] * 4)
# negative desired
assert_raises(ValueError, firls, 11, [0.1, 0.2], [-1, 1])
# len(weight) != len(pairs)
assert_raises(ValueError, firls, 11, [0.1, 0.2], [0, 0], weight=[1, 2])
# negative weight
assert_raises(ValueError, firls, 11, [0.1, 0.2], [0, 0], weight=[-1])
@skip_xp_backends("dask.array", reason="dask fancy indexing shape=(nan,)")
def test_firls(self, xp):
N = 11 # number of taps in the filter
a = 0.1 # width of the transition band
# design a halfband symmetric low-pass filter
h = firls(11, xp.asarray([0, a, 0.5 - a, 0.5]), xp.asarray([1, 1, 0, 0]),
fs=1.0)
# make sure the filter has correct # of taps
assert h.shape[0] == N
# make sure it is symmetric
midx = (N-1) // 2
flip = array_namespace(h).flip
assert_array_almost_equal(h[:midx], flip(h[midx+1:])) # h[:-midx-1:-1])
# make sure the center tap is 0.5
assert math.isclose(h[midx], 0.5, abs_tol=1e-8)
# For halfband symmetric, odd coefficients (except the center)
# should be zero (really small)
hodd = xp.stack((h[1:midx:2], h[-midx+1::2]))
assert_array_almost_equal(hodd, xp.zeros_like(hodd))
# now check the frequency response
w, H = freqz(np.asarray(h), 1)
w, H = xp.asarray(w), xp.asarray(H)
f = w/2/xp.pi
Hmag = xp.abs(H)
# check that the pass band is close to unity
idx = xp.logical_and(f > 0, f < a)
assert_array_almost_equal(Hmag[idx], xp.ones_like(Hmag[idx]), decimal=3)
# check that the stop band is close to zero
idx = xp.logical_and(f > 0.5 - a, f < 0.5)
assert_array_almost_equal(Hmag[idx], xp.zeros_like(Hmag[idx]), decimal=3)
def test_compare(self, xp):
# compare to OCTAVE output
taps = firls(9, xp.asarray([0, 0.5, 0.55, 1]),
xp.asarray([1, 1, 0, 0]), weight=xp.asarray([1, 2]))
# >> taps = firls(8, [0 0.5 0.55 1], [1 1 0 0], [1, 2]);
known_taps = [-6.26930101730182e-04, -1.03354450635036e-01,
-9.81576747564301e-03, 3.17271686090449e-01,
5.11409425599933e-01, 3.17271686090449e-01,
-9.81576747564301e-03, -1.03354450635036e-01,
-6.26930101730182e-04]
atol_arg = {'atol': 5e-8} if xp_default_dtype(xp) == xp.float32 else {}
known_taps = xp.asarray(known_taps, dtype=xp.float64)
xp_assert_close(taps, known_taps, **atol_arg)
# compare to MATLAB output
taps = firls(11, xp.asarray([0, 0.5, 0.5, 1]),
xp.asarray([1, 1, 0, 0]), weight=xp.asarray([1, 2]))
# >> taps = firls(10, [0 0.5 0.5 1], [1 1 0 0], [1, 2]);
known_taps = [
0.058545300496815, -0.014233383714318, -0.104688258464392,
0.012403323025279, 0.317930861136062, 0.488047220029700,
0.317930861136062, 0.012403323025279, -0.104688258464392,
-0.014233383714318, 0.058545300496815]
known_taps = xp.asarray(known_taps, dtype=xp.float64)
atol_arg = {'atol': 3e-8} if xp_default_dtype(xp) == xp.float32 else {}
xp_assert_close(taps, known_taps, **atol_arg)
# With linear changes:
taps = firls(7, xp.asarray((0, 1, 2, 3, 4, 5)),
xp.asarray([1, 0, 0, 1, 1, 0]), fs=20)
# >> taps = firls(6, [0, 0.1, 0.2, 0.3, 0.4, 0.5], [1, 0, 0, 1, 1, 0])
known_taps = [
1.156090832768218, -4.1385894727395849, 7.5288619164321826,
-8.5530572592947856, 7.5288619164321826, -4.1385894727395849,
1.156090832768218]
known_taps = xp.asarray(known_taps, dtype=xp.float64)
xp_assert_close(taps, known_taps)
def test_rank_deficient(self, xp):
# solve() runs but warns (only sometimes, so here we don't use match)
x = firls(21, xp.asarray([0, 0.1, 0.9, 1]), xp.asarray([1, 1, 0, 0]))
w, h = freqz(np.asarray(x), fs=2.)
w, h = map(xp.asarray, (w, h)) # XXX convert freqz
absh2 = xp.abs(h[:2])
xp_assert_close(absh2, xp.ones_like(absh2), atol=1e-5)
absh2 = xp.abs(h[-2:])
xp_assert_close(absh2, xp.zeros_like(absh2), atol=1e-6, rtol=1e-7)
# switch to pinvh (tolerances could be higher with longer
# filters, but using shorter ones is faster computationally and
# the idea is the same)
x = firls(101, xp.asarray([0, 0.01, 0.99, 1]), xp.asarray([1, 1, 0, 0]))
w, h = freqz(np.asarray(x), fs=2.)
w, h = map(xp.asarray, (w, h)) # XXX convert freqz
mask = xp.asarray(w < 0.01)
h = xp.asarray(h)
assert xp.sum(xp.astype(mask, xp.int64)) > 3
habs = xp.abs(h[mask])
xp_assert_close(habs, xp.ones_like(habs), atol=1e-4)
mask = xp.asarray(w > 0.99)
assert xp.sum(xp.astype(mask, xp.int64)) > 3
habs = xp.abs(h[mask])
xp_assert_close(habs, xp.zeros_like(habs), atol=1e-4)
def test_fs_validation(self):
with pytest.raises(ValueError, match="Sampling.*single scalar"):
firls(11, .1, 1, fs=np.array([10, 20]))
class TestMinimumPhase:
@pytest.mark.thread_unsafe
def test_bad_args(self):
# not enough taps
assert_raises(ValueError, minimum_phase, [1.])
assert_raises(ValueError, minimum_phase, [1., 1.])
assert_raises(ValueError, minimum_phase, np.full(10, 1j))
assert_raises((ValueError, TypeError), minimum_phase, 'foo')
assert_raises(ValueError, minimum_phase, np.ones(10), n_fft=8)
assert_raises(ValueError, minimum_phase, np.ones(10), method='foo')
assert_warns(RuntimeWarning, minimum_phase, np.arange(3))
with pytest.raises(ValueError, match="is only supported when"):
minimum_phase(np.ones(3), method='hilbert', half=False)
def test_homomorphic(self):
# check that it can recover frequency responses of arbitrary
# linear-phase filters
# for some cases we can get the actual filter back
h = [1, -1]
h_new = minimum_phase(np.convolve(h, h[::-1]))
xp_assert_close(h_new, np.asarray(h, dtype=np.float64), rtol=0.05)
# but in general we only guarantee we get the magnitude back
rng = np.random.RandomState(0)
for n in (2, 3, 10, 11, 15, 16, 17, 20, 21, 100, 101):
h = rng.randn(n)
h_linear = np.convolve(h, h[::-1])
h_new = minimum_phase(h_linear)
xp_assert_close(np.abs(fft(h_new)), np.abs(fft(h)), rtol=1e-4)
h_new = minimum_phase(h_linear, half=False)
assert len(h_linear) == len(h_new)
xp_assert_close(np.abs(fft(h_new)), np.abs(fft(h_linear)), rtol=1e-4)
@skip_xp_backends("dask.array", reason="too slow")
@skip_xp_backends("jax.numpy", reason="immutable arrays")
def test_hilbert(self, xp):
# compare to MATLAB output of reference implementation
# f=[0 0.3 0.5 1];
# a=[1 1 0 0];
# h=remez(11,f,a);
h = remez(12, [0, 0.3, 0.5, 1], [1, 0], fs=2.)
k = [0.349585548646686, 0.373552164395447, 0.326082685363438,
0.077152207480935, -0.129943946349364, -0.059355880509749]
h = xp.asarray(h)
k = xp.asarray(k, dtype=xp.float64)
m = minimum_phase(h, 'hilbert')
xp_assert_close(m, k, rtol=5e-3)
# f=[0 0.8 0.9 1];
# a=[0 0 1 1];
# h=remez(20,f,a);
h = remez(21, [0, 0.8, 0.9, 1], [0, 1], fs=2.)
k = [0.232486803906329, -0.133551833687071, 0.151871456867244,
-0.157957283165866, 0.151739294892963, -0.129293146705090,
0.100787844523204, -0.065832656741252, 0.035361328741024,
-0.014977068692269, -0.158416139047557]
h = xp.asarray(h)
k = xp.asarray(k, dtype=xp.float64)
m = minimum_phase(h, 'hilbert', n_fft=2**19)
xp_assert_close(m, k, rtol=2e-3)
class Testfirwin_2d:
def test_invalid_args(self):
with pytest.raises(ValueError,
match="hsize must be a 2-element tuple or list"):
firwin_2d((50,), window=(("kaiser", 5.0), "boxcar"), fc=0.4)
with pytest.raises(ValueError,
match="window must be a 2-element tuple or list"):
firwin_2d((51, 51), window=("hamming",), fc=0.5)
with pytest.raises(ValueError,
match="window must be a 2-element tuple or list"):
firwin_2d((51, 51), window="invalid_window", fc=0.5)
def test_filter_design(self):
hsize = (51, 51)
window = (("kaiser", 8.0), ("kaiser", 8.0))
fc = 0.4
taps_kaiser = firwin_2d(hsize, window, fc=fc)
assert taps_kaiser.shape == (51, 51)
window = ("hamming", "hamming")
taps_hamming = firwin_2d(hsize, window, fc=fc)
assert taps_hamming.shape == (51, 51)
def test_impulse_response(self):
hsize = (31, 31)
window = ("hamming", "hamming")
fc = 0.4
taps = firwin_2d(hsize, window, fc=fc)
impulse = np.zeros((63, 63))
impulse[31, 31] = 1
response = convolve2d(impulse, taps, mode='same')
expected_response = taps
xp_assert_close(response[16:47, 16:47], expected_response, rtol=1e-5)
def test_frequency_response(self):
"""Compare 1d and 2d frequency response. """
hsize = (31, 31)
windows = ("hamming", "hamming")
fc = 0.4
taps_1d = firwin(numtaps=hsize[0], cutoff=fc, window=windows[0])
taps_2d = firwin_2d(hsize, windows, fc=fc)
f_resp_1d = fft(taps_1d)
f_resp_2d = fft2(taps_2d)
xp_assert_close(f_resp_2d[0, :], f_resp_1d,
err_msg='DC Gain at (0, f1) is not unity!')
xp_assert_close(f_resp_2d[:, 0], f_resp_1d,
err_msg='DC Gain at (f0, 0) is not unity!')
xp_assert_close(f_resp_2d, np.outer(f_resp_1d, f_resp_1d),
atol=np.finfo(f_resp_2d.dtype).resolution,
err_msg='2d frequency response is not product of 1d responses')
def test_symmetry(self):
hsize = (51, 51)
window = ("hamming", "hamming")
fc = 0.4
taps = firwin_2d(hsize, window, fc=fc)
xp_assert_close(taps, np.flip(taps), rtol=1e-5)
def test_circular_symmetry(self):
hsize = (51, 51)
window = "hamming"
taps = firwin_2d(hsize, window, circular=True, fc=0.5)
center = hsize[0] // 2
for i in range(hsize[0]):
for j in range(hsize[1]):
xp_assert_close(taps[i, j],
taps[center - (i - center), center - (j - center)],
rtol=1e-5)
def test_edge_case_circular(self):
hsize = (3, 3)
window = "hamming"
taps_small = firwin_2d(hsize, window, circular=True, fc=0.5)
assert taps_small.shape == (3, 3)
hsize = (101, 101)
taps_large = firwin_2d(hsize, window, circular=True, fc=0.5)
assert taps_large.shape == (101, 101)
def test_known_result(self):
hsize = (5, 5)
window = ('kaiser', 8.0)
fc = 0.1
fs = 2
row_filter = firwin(hsize[0], cutoff=fc, window=window, fs=fs)
col_filter = firwin(hsize[1], cutoff=fc, window=window, fs=fs)
known_result = np.outer(row_filter, col_filter)
taps = firwin_2d(hsize, (window, window), fc=fc)
assert taps.shape == known_result.shape, (
f"Shape mismatch: {taps.shape} vs {known_result.shape}"
)
assert np.allclose(taps, known_result, rtol=1e-1), (
f"Filter shape mismatch: {taps} vs {known_result}"
)

Some files were not shown because too many files have changed in this diff Show more