mirror of
https://forge.chapril.org/tykayn/orgmode-to-gemini-blog
synced 2025-06-20 09:04:42 +02:00
backup tkblog and cipherbliss blog org files
This commit is contained in:
parent
4e998015b3
commit
2051ad3285
1230 changed files with 69901 additions and 2217 deletions
|
@ -83,12 +83,162 @@ input, button, textarea, select {
|
|||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||||
<title>dragonfeu_blog</title>
|
||||
<style>
|
||||
html {
|
||||
color: #1a1a1a;
|
||||
background-color: #fdfdfd;
|
||||
}
|
||||
body {
|
||||
margin: 0 auto;
|
||||
max-width: 36em;
|
||||
padding-left: 50px;
|
||||
padding-right: 50px;
|
||||
padding-top: 50px;
|
||||
padding-bottom: 50px;
|
||||
hyphens: auto;
|
||||
overflow-wrap: break-word;
|
||||
text-rendering: optimizeLegibility;
|
||||
font-kerning: normal;
|
||||
}
|
||||
@media (max-width: 600px) {
|
||||
body {
|
||||
font-size: 0.9em;
|
||||
padding: 12px;
|
||||
}
|
||||
h1 {
|
||||
font-size: 1.8em;
|
||||
}
|
||||
}
|
||||
@media print {
|
||||
html {
|
||||
background-color: white;
|
||||
}
|
||||
body {
|
||||
background-color: transparent;
|
||||
color: black;
|
||||
font-size: 12pt;
|
||||
}
|
||||
p, h2, h3 {
|
||||
orphans: 3;
|
||||
widows: 3;
|
||||
}
|
||||
h2, h3, h4 {
|
||||
page-break-after: avoid;
|
||||
}
|
||||
}
|
||||
p {
|
||||
margin: 1em 0;
|
||||
}
|
||||
a {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
a:visited {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
img {
|
||||
max-width: 100%;
|
||||
}
|
||||
h1, h2, h3, h4, h5, h6 {
|
||||
margin-top: 1.4em;
|
||||
}
|
||||
h5, h6 {
|
||||
font-size: 1em;
|
||||
font-style: italic;
|
||||
}
|
||||
h6 {
|
||||
font-weight: normal;
|
||||
}
|
||||
ol, ul {
|
||||
padding-left: 1.7em;
|
||||
margin-top: 1em;
|
||||
}
|
||||
li > ol, li > ul {
|
||||
margin-top: 0;
|
||||
}
|
||||
blockquote {
|
||||
margin: 1em 0 1em 1.7em;
|
||||
padding-left: 1em;
|
||||
border-left: 2px solid #e6e6e6;
|
||||
color: #606060;
|
||||
}
|
||||
code {
|
||||
font-family: Menlo, Monaco, Consolas, 'Lucida Console', monospace;
|
||||
font-size: 85%;
|
||||
margin: 0;
|
||||
hyphens: manual;
|
||||
}
|
||||
pre {
|
||||
margin: 1em 0;
|
||||
overflow: auto;
|
||||
}
|
||||
pre code {
|
||||
padding: 0;
|
||||
overflow: visible;
|
||||
overflow-wrap: normal;
|
||||
}
|
||||
.sourceCode {
|
||||
background-color: transparent;
|
||||
overflow: visible;
|
||||
}
|
||||
hr {
|
||||
background-color: #1a1a1a;
|
||||
border: none;
|
||||
height: 1px;
|
||||
margin: 1em 0;
|
||||
}
|
||||
table {
|
||||
margin: 1em 0;
|
||||
border-collapse: collapse;
|
||||
width: 100%;
|
||||
overflow-x: auto;
|
||||
display: block;
|
||||
font-variant-numeric: lining-nums tabular-nums;
|
||||
}
|
||||
table caption {
|
||||
margin-bottom: 0.75em;
|
||||
}
|
||||
tbody {
|
||||
margin-top: 0.5em;
|
||||
border-top: 1px solid #1a1a1a;
|
||||
border-bottom: 1px solid #1a1a1a;
|
||||
}
|
||||
th {
|
||||
border-top: 1px solid #1a1a1a;
|
||||
padding: 0.25em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
td {
|
||||
padding: 0.125em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
header {
|
||||
margin-bottom: 4em;
|
||||
text-align: center;
|
||||
}
|
||||
#TOC li {
|
||||
list-style: none;
|
||||
}
|
||||
#TOC ul {
|
||||
padding-left: 1.3em;
|
||||
}
|
||||
#TOC > ul {
|
||||
padding-left: 0;
|
||||
}
|
||||
#TOC a:not(:hover) {
|
||||
text-decoration: none;
|
||||
}
|
||||
code{white-space: pre-wrap;}
|
||||
span.smallcaps{font-variant: small-caps;}
|
||||
span.underline{text-decoration: underline;}
|
||||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||||
div.columns{display: flex; gap: min(4vw, 1.5em);}
|
||||
div.column{flex: auto; overflow-x: auto;}
|
||||
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
||||
ul.task-list{list-style: none;}
|
||||
/* The extra [class] is a hack that increases specificity enough to
|
||||
override a similar rule in reveal.js */
|
||||
ul.task-list[class]{list-style: none;}
|
||||
ul.task-list li input[type="checkbox"] {
|
||||
font-size: inherit;
|
||||
width: 0.8em;
|
||||
margin: 0 0.8em 0.2em -1.6em;
|
||||
vertical-align: middle;
|
||||
}
|
||||
.display.math{display: block; text-align: center; margin: 0.5rem auto;}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
|
@ -96,7 +246,8 @@ input, button, textarea, select {
|
|||
<h1 class="title">dragonfeu_blog</h1>
|
||||
</header>
|
||||
<hr />
|
||||
<p>Les trucs d'un dragon qui roule plus vite à vélo tel un neutron rapide, mais avec un casque opour le vélotaf chez Hexana.</p>
|
||||
<p>Les trucs d'un dragon qui roule plus vite à vélo tel un neutron
|
||||
rapide, mais avec un casque opour le vélotaf chez Hexana.</p>
|
||||
<hr />
|
||||
<p>À propos => a-propos.gmi</p>
|
||||
<p>Projets => projets.gmi</p>
|
||||
|
|
|
@ -160,12 +160,162 @@ input, button, textarea, select {
|
|||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||||
<title>dragonfeu_blog</title>
|
||||
<style>
|
||||
html {
|
||||
color: #1a1a1a;
|
||||
background-color: #fdfdfd;
|
||||
}
|
||||
body {
|
||||
margin: 0 auto;
|
||||
max-width: 36em;
|
||||
padding-left: 50px;
|
||||
padding-right: 50px;
|
||||
padding-top: 50px;
|
||||
padding-bottom: 50px;
|
||||
hyphens: auto;
|
||||
overflow-wrap: break-word;
|
||||
text-rendering: optimizeLegibility;
|
||||
font-kerning: normal;
|
||||
}
|
||||
@media (max-width: 600px) {
|
||||
body {
|
||||
font-size: 0.9em;
|
||||
padding: 12px;
|
||||
}
|
||||
h1 {
|
||||
font-size: 1.8em;
|
||||
}
|
||||
}
|
||||
@media print {
|
||||
html {
|
||||
background-color: white;
|
||||
}
|
||||
body {
|
||||
background-color: transparent;
|
||||
color: black;
|
||||
font-size: 12pt;
|
||||
}
|
||||
p, h2, h3 {
|
||||
orphans: 3;
|
||||
widows: 3;
|
||||
}
|
||||
h2, h3, h4 {
|
||||
page-break-after: avoid;
|
||||
}
|
||||
}
|
||||
p {
|
||||
margin: 1em 0;
|
||||
}
|
||||
a {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
a:visited {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
img {
|
||||
max-width: 100%;
|
||||
}
|
||||
h1, h2, h3, h4, h5, h6 {
|
||||
margin-top: 1.4em;
|
||||
}
|
||||
h5, h6 {
|
||||
font-size: 1em;
|
||||
font-style: italic;
|
||||
}
|
||||
h6 {
|
||||
font-weight: normal;
|
||||
}
|
||||
ol, ul {
|
||||
padding-left: 1.7em;
|
||||
margin-top: 1em;
|
||||
}
|
||||
li > ol, li > ul {
|
||||
margin-top: 0;
|
||||
}
|
||||
blockquote {
|
||||
margin: 1em 0 1em 1.7em;
|
||||
padding-left: 1em;
|
||||
border-left: 2px solid #e6e6e6;
|
||||
color: #606060;
|
||||
}
|
||||
code {
|
||||
font-family: Menlo, Monaco, Consolas, 'Lucida Console', monospace;
|
||||
font-size: 85%;
|
||||
margin: 0;
|
||||
hyphens: manual;
|
||||
}
|
||||
pre {
|
||||
margin: 1em 0;
|
||||
overflow: auto;
|
||||
}
|
||||
pre code {
|
||||
padding: 0;
|
||||
overflow: visible;
|
||||
overflow-wrap: normal;
|
||||
}
|
||||
.sourceCode {
|
||||
background-color: transparent;
|
||||
overflow: visible;
|
||||
}
|
||||
hr {
|
||||
background-color: #1a1a1a;
|
||||
border: none;
|
||||
height: 1px;
|
||||
margin: 1em 0;
|
||||
}
|
||||
table {
|
||||
margin: 1em 0;
|
||||
border-collapse: collapse;
|
||||
width: 100%;
|
||||
overflow-x: auto;
|
||||
display: block;
|
||||
font-variant-numeric: lining-nums tabular-nums;
|
||||
}
|
||||
table caption {
|
||||
margin-bottom: 0.75em;
|
||||
}
|
||||
tbody {
|
||||
margin-top: 0.5em;
|
||||
border-top: 1px solid #1a1a1a;
|
||||
border-bottom: 1px solid #1a1a1a;
|
||||
}
|
||||
th {
|
||||
border-top: 1px solid #1a1a1a;
|
||||
padding: 0.25em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
td {
|
||||
padding: 0.125em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
header {
|
||||
margin-bottom: 4em;
|
||||
text-align: center;
|
||||
}
|
||||
#TOC li {
|
||||
list-style: none;
|
||||
}
|
||||
#TOC ul {
|
||||
padding-left: 1.3em;
|
||||
}
|
||||
#TOC > ul {
|
||||
padding-left: 0;
|
||||
}
|
||||
#TOC a:not(:hover) {
|
||||
text-decoration: none;
|
||||
}
|
||||
code{white-space: pre-wrap;}
|
||||
span.smallcaps{font-variant: small-caps;}
|
||||
span.underline{text-decoration: underline;}
|
||||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||||
div.columns{display: flex; gap: min(4vw, 1.5em);}
|
||||
div.column{flex: auto; overflow-x: auto;}
|
||||
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
||||
ul.task-list{list-style: none;}
|
||||
/* The extra [class] is a hack that increases specificity enough to
|
||||
override a similar rule in reveal.js */
|
||||
ul.task-list[class]{list-style: none;}
|
||||
ul.task-list li input[type="checkbox"] {
|
||||
font-size: inherit;
|
||||
width: 0.8em;
|
||||
margin: 0 0.8em 0.2em -1.6em;
|
||||
vertical-align: middle;
|
||||
}
|
||||
.display.math{display: block; text-align: center; margin: 0.5rem auto;}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
|
|
|
@ -160,34 +160,200 @@ input, button, textarea, select {
|
|||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||||
<title>dragonfeu_blog</title>
|
||||
<style>
|
||||
html {
|
||||
color: #1a1a1a;
|
||||
background-color: #fdfdfd;
|
||||
}
|
||||
body {
|
||||
margin: 0 auto;
|
||||
max-width: 36em;
|
||||
padding-left: 50px;
|
||||
padding-right: 50px;
|
||||
padding-top: 50px;
|
||||
padding-bottom: 50px;
|
||||
hyphens: auto;
|
||||
overflow-wrap: break-word;
|
||||
text-rendering: optimizeLegibility;
|
||||
font-kerning: normal;
|
||||
}
|
||||
@media (max-width: 600px) {
|
||||
body {
|
||||
font-size: 0.9em;
|
||||
padding: 12px;
|
||||
}
|
||||
h1 {
|
||||
font-size: 1.8em;
|
||||
}
|
||||
}
|
||||
@media print {
|
||||
html {
|
||||
background-color: white;
|
||||
}
|
||||
body {
|
||||
background-color: transparent;
|
||||
color: black;
|
||||
font-size: 12pt;
|
||||
}
|
||||
p, h2, h3 {
|
||||
orphans: 3;
|
||||
widows: 3;
|
||||
}
|
||||
h2, h3, h4 {
|
||||
page-break-after: avoid;
|
||||
}
|
||||
}
|
||||
p {
|
||||
margin: 1em 0;
|
||||
}
|
||||
a {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
a:visited {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
img {
|
||||
max-width: 100%;
|
||||
}
|
||||
h1, h2, h3, h4, h5, h6 {
|
||||
margin-top: 1.4em;
|
||||
}
|
||||
h5, h6 {
|
||||
font-size: 1em;
|
||||
font-style: italic;
|
||||
}
|
||||
h6 {
|
||||
font-weight: normal;
|
||||
}
|
||||
ol, ul {
|
||||
padding-left: 1.7em;
|
||||
margin-top: 1em;
|
||||
}
|
||||
li > ol, li > ul {
|
||||
margin-top: 0;
|
||||
}
|
||||
blockquote {
|
||||
margin: 1em 0 1em 1.7em;
|
||||
padding-left: 1em;
|
||||
border-left: 2px solid #e6e6e6;
|
||||
color: #606060;
|
||||
}
|
||||
code {
|
||||
font-family: Menlo, Monaco, Consolas, 'Lucida Console', monospace;
|
||||
font-size: 85%;
|
||||
margin: 0;
|
||||
hyphens: manual;
|
||||
}
|
||||
pre {
|
||||
margin: 1em 0;
|
||||
overflow: auto;
|
||||
}
|
||||
pre code {
|
||||
padding: 0;
|
||||
overflow: visible;
|
||||
overflow-wrap: normal;
|
||||
}
|
||||
.sourceCode {
|
||||
background-color: transparent;
|
||||
overflow: visible;
|
||||
}
|
||||
hr {
|
||||
background-color: #1a1a1a;
|
||||
border: none;
|
||||
height: 1px;
|
||||
margin: 1em 0;
|
||||
}
|
||||
table {
|
||||
margin: 1em 0;
|
||||
border-collapse: collapse;
|
||||
width: 100%;
|
||||
overflow-x: auto;
|
||||
display: block;
|
||||
font-variant-numeric: lining-nums tabular-nums;
|
||||
}
|
||||
table caption {
|
||||
margin-bottom: 0.75em;
|
||||
}
|
||||
tbody {
|
||||
margin-top: 0.5em;
|
||||
border-top: 1px solid #1a1a1a;
|
||||
border-bottom: 1px solid #1a1a1a;
|
||||
}
|
||||
th {
|
||||
border-top: 1px solid #1a1a1a;
|
||||
padding: 0.25em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
td {
|
||||
padding: 0.125em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
header {
|
||||
margin-bottom: 4em;
|
||||
text-align: center;
|
||||
}
|
||||
#TOC li {
|
||||
list-style: none;
|
||||
}
|
||||
#TOC ul {
|
||||
padding-left: 1.3em;
|
||||
}
|
||||
#TOC > ul {
|
||||
padding-left: 0;
|
||||
}
|
||||
#TOC a:not(:hover) {
|
||||
text-decoration: none;
|
||||
}
|
||||
code{white-space: pre-wrap;}
|
||||
span.smallcaps{font-variant: small-caps;}
|
||||
span.underline{text-decoration: underline;}
|
||||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||||
div.columns{display: flex; gap: min(4vw, 1.5em);}
|
||||
div.column{flex: auto; overflow-x: auto;}
|
||||
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
||||
ul.task-list{list-style: none;}
|
||||
/* The extra [class] is a hack that increases specificity enough to
|
||||
override a similar rule in reveal.js */
|
||||
ul.task-list[class]{list-style: none;}
|
||||
ul.task-list li input[type="checkbox"] {
|
||||
font-size: inherit;
|
||||
width: 0.8em;
|
||||
margin: 0 0.8em 0.2em -1.6em;
|
||||
vertical-align: middle;
|
||||
}
|
||||
.display.math{display: block; text-align: center; margin: 0.5rem auto;}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<header id="title-block-header">
|
||||
<h1 class="title">dragonfeu_blog</h1>
|
||||
</header>
|
||||
<h1 id="récapitulatif-de-mon-contenu-twitter">Récapitulatif de mon contenu twitter</h1>
|
||||
<h1 id="récapitulatif-de-mon-contenu-twitter">Récapitulatif de mon
|
||||
contenu twitter</h1>
|
||||
<p>Jun 9, 2023</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:700/1*YZR7U4s767ZMQfrxi0EhYA.jpeg" /></p>
|
||||
<p><a href="https://fr.wikipedia.org/wiki/Superphénix">RNR-Na Superphénix, France.</a></p>
|
||||
<p>Thread des réacteurs à sels fondus 1/3 : <a href="https://twitter.com/Draagonfire2/status/1619795919045550080"><a href="https://twitter.com/Draagonfire2/status/1619795919045550080">https://twitter.com/Draagonfire2/status/1619795919045550080</a></a></p>
|
||||
<p>Thread des réacteurs à sels fondus 2/3 : <a href="https://twitter.com/Draagonfire2/status/1622176144647770114"><a href="https://twitter.com/Draagonfire2/status/1622176144647770114">https://twitter.com/Draagonfire2/status/1622176144647770114</a></a></p>
|
||||
<p>Thread des réacteurs à sels fondus 3/3 : <a href="https://twitter.com/Draagonfire2/status/1627367034504839170"><a href="https://twitter.com/Draagonfire2/status/1627367034504839170">https://twitter.com/Draagonfire2/status/1627367034504839170</a></a></p>
|
||||
<p>Thread sur le réacteur Stellaria: <a href="https://twitter.com/Draagonfire2/status/1676216176157020160"><a href="https://twitter.com/Draagonfire2/status/1676216176157020160">https://twitter.com/Draagonfire2/status/1676216176157020160</a></a></p>
|
||||
<p>Thread récapitulatif sur la Commission d’enquête visant à établir les raisons de la perte de souveraineté et d’indépendance énergétique de la France: <a href="https://twitter.com/Draagonfire2/status/1642231133738872835"><a href="https://twitter.com/Draagonfire2/status/1642231133738872835">https://twitter.com/Draagonfire2/status/1642231133738872835</a></a></p>
|
||||
<p>Thread Brennilis: <a href="https://twitter.com/Draagonfire2/status/1599406535796350977"><a href="https://twitter.com/Draagonfire2/status/1599406535796350977">https://twitter.com/Draagonfire2/status/1599406535796350977</a></a></p>
|
||||
<p>Thread Osiris : <a href="https://twitter.com/Draagonfire2/status/1600173316790050819"><a href="https://twitter.com/Draagonfire2/status/1600173316790050819">https://twitter.com/Draagonfire2/status/1600173316790050819</a></a></p>
|
||||
<p>Thread GIEC et nucléaire: <a href="https://twitter.com/Draagonfire2/status/1511484306639708166"><a href="https://twitter.com/Draagonfire2/status/1511484306639708166">https://twitter.com/Draagonfire2/status/1511484306639708166</a></a></p>
|
||||
<p>Article sur Zaporijia: <a href="https://medium.com/@caraibe35/point-de-situation-sur-la-centrale-nucléaire-de-zaporijia-94cfc28a84fd"><a href="https://medium.com/@caraibe35/point-de-situation-sur-la-centrale-nucl%C3%A9aire-de-zaporijia-94cfc28a84fd">https://medium.com/@caraibe35/point-de-situation-sur-la-centrale-nucl%C3%A9aire-de-zaporijia-94cfc28a84fd</a></a></p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:700/1*YZR7U4s767ZMQfrxi0EhYA.jpeg" /></p>
|
||||
<p><a href="https://fr.wikipedia.org/wiki/Superphénix">RNR-Na
|
||||
Superphénix, France.</a></p>
|
||||
<p>Thread des réacteurs à sels fondus 1/3 : <a
|
||||
href="https://twitter.com/Draagonfire2/status/1619795919045550080"><span>https://twitter.com/Draagonfire2/status/1619795919045550080</span></a></p>
|
||||
<p>Thread des réacteurs à sels fondus 2/3 : <a
|
||||
href="https://twitter.com/Draagonfire2/status/1622176144647770114"><span>https://twitter.com/Draagonfire2/status/1622176144647770114</span></a></p>
|
||||
<p>Thread des réacteurs à sels fondus 3/3 : <a
|
||||
href="https://twitter.com/Draagonfire2/status/1627367034504839170"><span>https://twitter.com/Draagonfire2/status/1627367034504839170</span></a></p>
|
||||
<p>Thread sur le réacteur Stellaria: <a
|
||||
href="https://twitter.com/Draagonfire2/status/1676216176157020160"><span>https://twitter.com/Draagonfire2/status/1676216176157020160</span></a></p>
|
||||
<p>Thread récapitulatif sur la Commission d’enquête visant à établir les
|
||||
raisons de la perte de souveraineté et d’indépendance énergétique de la
|
||||
France: <a
|
||||
href="https://twitter.com/Draagonfire2/status/1642231133738872835"><span>https://twitter.com/Draagonfire2/status/1642231133738872835</span></a></p>
|
||||
<p>Thread Brennilis: <a
|
||||
href="https://twitter.com/Draagonfire2/status/1599406535796350977"><span>https://twitter.com/Draagonfire2/status/1599406535796350977</span></a></p>
|
||||
<p>Thread Osiris : <a
|
||||
href="https://twitter.com/Draagonfire2/status/1600173316790050819"><span>https://twitter.com/Draagonfire2/status/1600173316790050819</span></a></p>
|
||||
<p>Thread GIEC et nucléaire: <a
|
||||
href="https://twitter.com/Draagonfire2/status/1511484306639708166"><span>https://twitter.com/Draagonfire2/status/1511484306639708166</span></a></p>
|
||||
<p>Article sur Zaporijia: <a
|
||||
href="https://medium.com/@caraibe35/point-de-situation-sur-la-centrale-nucléaire-de-zaporijia-94cfc28a84fd"><span>https://medium.com/@caraibe35/point-de-situation-sur-la-centrale-nucl%C3%A9aire-de-zaporijia-94cfc28a84fd</span></a></p>
|
||||
<p>La grenouille des ratios, à utiliser comme vous voulez:</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:755/1*RIkCt_i9wqD3ou6-IvEq0g.png" /></p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:751/1*YIqQ2mfZgptSfhTRL4_gsA.png" /></p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:755/1*RIkCt_i9wqD3ou6-IvEq0g.png" /></p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:751/1*YIqQ2mfZgptSfhTRL4_gsA.png" /></p>
|
||||
<ul>
|
||||
<li>Dragonfeu</li>
|
||||
</ul>
|
||||
|
|
|
@ -160,166 +160,748 @@ input, button, textarea, select {
|
|||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||||
<title>dragonfeu_blog</title>
|
||||
<style>
|
||||
html {
|
||||
color: #1a1a1a;
|
||||
background-color: #fdfdfd;
|
||||
}
|
||||
body {
|
||||
margin: 0 auto;
|
||||
max-width: 36em;
|
||||
padding-left: 50px;
|
||||
padding-right: 50px;
|
||||
padding-top: 50px;
|
||||
padding-bottom: 50px;
|
||||
hyphens: auto;
|
||||
overflow-wrap: break-word;
|
||||
text-rendering: optimizeLegibility;
|
||||
font-kerning: normal;
|
||||
}
|
||||
@media (max-width: 600px) {
|
||||
body {
|
||||
font-size: 0.9em;
|
||||
padding: 12px;
|
||||
}
|
||||
h1 {
|
||||
font-size: 1.8em;
|
||||
}
|
||||
}
|
||||
@media print {
|
||||
html {
|
||||
background-color: white;
|
||||
}
|
||||
body {
|
||||
background-color: transparent;
|
||||
color: black;
|
||||
font-size: 12pt;
|
||||
}
|
||||
p, h2, h3 {
|
||||
orphans: 3;
|
||||
widows: 3;
|
||||
}
|
||||
h2, h3, h4 {
|
||||
page-break-after: avoid;
|
||||
}
|
||||
}
|
||||
p {
|
||||
margin: 1em 0;
|
||||
}
|
||||
a {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
a:visited {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
img {
|
||||
max-width: 100%;
|
||||
}
|
||||
h1, h2, h3, h4, h5, h6 {
|
||||
margin-top: 1.4em;
|
||||
}
|
||||
h5, h6 {
|
||||
font-size: 1em;
|
||||
font-style: italic;
|
||||
}
|
||||
h6 {
|
||||
font-weight: normal;
|
||||
}
|
||||
ol, ul {
|
||||
padding-left: 1.7em;
|
||||
margin-top: 1em;
|
||||
}
|
||||
li > ol, li > ul {
|
||||
margin-top: 0;
|
||||
}
|
||||
blockquote {
|
||||
margin: 1em 0 1em 1.7em;
|
||||
padding-left: 1em;
|
||||
border-left: 2px solid #e6e6e6;
|
||||
color: #606060;
|
||||
}
|
||||
code {
|
||||
font-family: Menlo, Monaco, Consolas, 'Lucida Console', monospace;
|
||||
font-size: 85%;
|
||||
margin: 0;
|
||||
hyphens: manual;
|
||||
}
|
||||
pre {
|
||||
margin: 1em 0;
|
||||
overflow: auto;
|
||||
}
|
||||
pre code {
|
||||
padding: 0;
|
||||
overflow: visible;
|
||||
overflow-wrap: normal;
|
||||
}
|
||||
.sourceCode {
|
||||
background-color: transparent;
|
||||
overflow: visible;
|
||||
}
|
||||
hr {
|
||||
background-color: #1a1a1a;
|
||||
border: none;
|
||||
height: 1px;
|
||||
margin: 1em 0;
|
||||
}
|
||||
table {
|
||||
margin: 1em 0;
|
||||
border-collapse: collapse;
|
||||
width: 100%;
|
||||
overflow-x: auto;
|
||||
display: block;
|
||||
font-variant-numeric: lining-nums tabular-nums;
|
||||
}
|
||||
table caption {
|
||||
margin-bottom: 0.75em;
|
||||
}
|
||||
tbody {
|
||||
margin-top: 0.5em;
|
||||
border-top: 1px solid #1a1a1a;
|
||||
border-bottom: 1px solid #1a1a1a;
|
||||
}
|
||||
th {
|
||||
border-top: 1px solid #1a1a1a;
|
||||
padding: 0.25em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
td {
|
||||
padding: 0.125em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
header {
|
||||
margin-bottom: 4em;
|
||||
text-align: center;
|
||||
}
|
||||
#TOC li {
|
||||
list-style: none;
|
||||
}
|
||||
#TOC ul {
|
||||
padding-left: 1.3em;
|
||||
}
|
||||
#TOC > ul {
|
||||
padding-left: 0;
|
||||
}
|
||||
#TOC a:not(:hover) {
|
||||
text-decoration: none;
|
||||
}
|
||||
code{white-space: pre-wrap;}
|
||||
span.smallcaps{font-variant: small-caps;}
|
||||
span.underline{text-decoration: underline;}
|
||||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||||
div.columns{display: flex; gap: min(4vw, 1.5em);}
|
||||
div.column{flex: auto; overflow-x: auto;}
|
||||
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
||||
ul.task-list{list-style: none;}
|
||||
/* The extra [class] is a hack that increases specificity enough to
|
||||
override a similar rule in reveal.js */
|
||||
ul.task-list[class]{list-style: none;}
|
||||
ul.task-list li input[type="checkbox"] {
|
||||
font-size: inherit;
|
||||
width: 0.8em;
|
||||
margin: 0 0.8em 0.2em -1.6em;
|
||||
vertical-align: middle;
|
||||
}
|
||||
.display.math{display: block; text-align: center; margin: 0.5rem auto;}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<header id="title-block-header">
|
||||
<h1 class="title">dragonfeu_blog</h1>
|
||||
</header>
|
||||
<p>Prenons un peu de recul sur ce qu’il se passe à Zaporijia. Il est important de préciser certains éléments.</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:660/0*9Iq86VpPQj9dzymu.jpg" /></p>
|
||||
<p>La centrale nucléaire de Zaporijia en Ukraine, et ses six VVER-1000/320</p>
|
||||
<p>La centrale nucléaire de Zaporijia (ZNPP) est dotée de six 6 réacteurs, des VVER-1000 modèle V-320, l’équivalent soviétique de nos Réacteurs à Eau sous Pression (REP en français). Ce sont des réacteurs de 3000MW thermiques et de 960MW électriques nets. C’est la filière qui a été déployée après les réacteurs RBMK (comme le réacteur responsable de l’accident de Tchernobyl). Pour bien comprendre tout cela, on va commencer par quelques bases de sûreté nucléaire, ensuite il faudra regarder quels sont les besoins actuels de la centrale et quelles évolutions sont possibles avec tous ces éléments de contexte. Je précise que je vais souvent me restreindre à la situation actuelle à la ZNPP, et que souvent, par manque d’informations sur les VVER, il faudra faire des analogies avec nos REP français.</p>
|
||||
<p>Prenons un peu de recul sur ce qu’il se passe à Zaporijia. Il est
|
||||
important de préciser certains éléments.</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:660/0*9Iq86VpPQj9dzymu.jpg" /></p>
|
||||
<p>La centrale nucléaire de Zaporijia en Ukraine, et ses six
|
||||
VVER-1000/320</p>
|
||||
<p>La centrale nucléaire de Zaporijia (ZNPP) est dotée de six 6
|
||||
réacteurs, des VVER-1000 modèle V-320, l’équivalent soviétique de nos
|
||||
Réacteurs à Eau sous Pression (REP en français). Ce sont des réacteurs
|
||||
de 3000MW thermiques et de 960MW électriques nets. C’est la filière qui
|
||||
a été déployée après les réacteurs RBMK (comme le réacteur responsable
|
||||
de l’accident de Tchernobyl). Pour bien comprendre tout cela, on va
|
||||
commencer par quelques bases de sûreté nucléaire, ensuite il faudra
|
||||
regarder quels sont les besoins actuels de la centrale et quelles
|
||||
évolutions sont possibles avec tous ces éléments de contexte. Je précise
|
||||
que je vais souvent me restreindre à la situation actuelle à la ZNPP, et
|
||||
que souvent, par manque d’informations sur les VVER, il faudra faire des
|
||||
analogies avec nos REP français.</p>
|
||||
<h1 id="bases-de-sûreté-nucléaire">Bases de sûreté nucléaire</h1>
|
||||
<h2 id="la-sûreté-nucléaire">La sûreté nucléaire</h2>
|
||||
<p>Que signifie sûreté nucléaire ? Il existe une définition, utilisée par toute l’industrie nucléaire française.</p>
|
||||
<p>Que signifie sûreté nucléaire ? Il existe une définition, utilisée
|
||||
par toute l’industrie nucléaire française.</p>
|
||||
<blockquote>
|
||||
<p>La sûreté nucléaire recouvre l’ensemble des dispositions techniques et les mesures d’organisation prises en vue de prévenir les accidents ou d’en limiter les effets. Elles concernent la conception, la construction, le fonctionnement, l’arrêt et le démantèlement des installations nucléaires de base, ainsi que le transport des substances radioactives. la sûreté nucléaire est une composante de la sécurité nucléaire qui comprend, en outre, la radioprotection, la prévention et la lutte contre les actions de malveillance, ainsi que les actions de sécurité civile en cas d’accident. Il s’agit donc à la fois :</p>
|
||||
<p>\-D’assurer des conditions de fonctionnement normal de l’installation sans exposition excessive des travailleurs aux rayonnements ionisants, et sans rejets excessifs de radioactivité dans l’environnement ;</p>
|
||||
<p>La sûreté nucléaire recouvre l’ensemble des dispositions techniques
|
||||
et les mesures d’organisation prises en vue de prévenir les accidents ou
|
||||
d’en limiter les effets. Elles concernent la conception, la
|
||||
construction, le fonctionnement, l’arrêt et le démantèlement des
|
||||
installations nucléaires de base, ainsi que le transport des substances
|
||||
radioactives. la sûreté nucléaire est une composante de la sécurité
|
||||
nucléaire qui comprend, en outre, la radioprotection, la prévention et
|
||||
la lutte contre les actions de malveillance, ainsi que les actions de
|
||||
sécurité civile en cas d’accident. Il s’agit donc à la fois :</p>
|
||||
<p>\-D’assurer des conditions de fonctionnement normal de l’installation
|
||||
sans exposition excessive des travailleurs aux rayonnements ionisants,
|
||||
et sans rejets excessifs de radioactivité dans l’environnement ;</p>
|
||||
<p>\-De prévenir les incidents et accidents ;</p>
|
||||
<p>\-En cas d’incidents ou d’accidents, de limiter les effets sur les travailleurs, les populations et l’environnement.</p>
|
||||
<p>\-En cas d’incidents ou d’accidents, de limiter les effets sur les
|
||||
travailleurs, les populations et l’environnement.</p>
|
||||
</blockquote>
|
||||
<h2 id="les-trois-fonctions-de-sûreté">Les trois fonctions de sûreté</h2>
|
||||
<p>Il faut en permanence surveiller les paramètres physiques du réacteur. On les appelle les « fonctions de sûreté ». Il y en a trois :</p>
|
||||
<h2 id="les-trois-fonctions-de-sûreté">Les trois fonctions de
|
||||
sûreté</h2>
|
||||
<p>Il faut en permanence surveiller les paramètres physiques du
|
||||
réacteur. On les appelle les « fonctions de sûreté ». Il y en a trois
|
||||
:</p>
|
||||
<ul>
|
||||
<li>Contrôler la réaction nucléaire, éviter l’emballement de la réaction nucléaire et l’arrêter au plus vite quand cela est nécessaire,</li>
|
||||
<li>Contrôle de la température du combustible nucléaire (évacuation de la puissance résiduelle), pour éviter une fusion du combustible,</li>
|
||||
<li>Confiner les matières radioactives, grâce aux trois barrières de confinement</li>
|
||||
<li>Contrôler la réaction nucléaire, éviter l’emballement de la réaction
|
||||
nucléaire et l’arrêter au plus vite quand cela est nécessaire,</li>
|
||||
<li>Contrôle de la température du combustible nucléaire (évacuation de
|
||||
la puissance résiduelle), pour éviter une fusion du combustible,</li>
|
||||
<li>Confiner les matières radioactives, grâce aux trois barrières de
|
||||
confinement</li>
|
||||
</ul>
|
||||
<p><a href="https://miro.medium.com/v2/resize:fit:700/0*FUAWsQ1MS0sVmsi4">https://miro.medium.com/v2/resize:fit:700/0*FUAWsQ1MS0sVmsi4</a></p>
|
||||
<p><a href="https://twitter.com/Draagonfire2/status/1622176366555693056">Issu du thread sur les réacteurs à sels fondus</a></p>
|
||||
<p><a
|
||||
href="https://miro.medium.com/v2/resize:fit:700/0*FUAWsQ1MS0sVmsi4">https://miro.medium.com/v2/resize:fit:700/0*FUAWsQ1MS0sVmsi4</a></p>
|
||||
<p><a
|
||||
href="https://twitter.com/Draagonfire2/status/1622176366555693056">Issu
|
||||
du thread sur les réacteurs à sels fondus</a></p>
|
||||
<h2 id="la-défense-en-profondeur">La défense en profondeur</h2>
|
||||
<p>Le principe de la défense en profondeur est une méthode qui consiste à établir des barrières pour éviter le passage à l’étape suivante. Si l’étape 1 échoue, on passe à la 2, et ainsi de suite. C’est une norme internationale, les VVER-1000 comme les REPs occidentaux appliquent ce principe.</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:700/1*Dlsj72YFDe2fcInjPmft7w.png" /></p>
|
||||
<p>Le principe de la défense en profondeur est une méthode qui consiste
|
||||
à établir des barrières pour éviter le passage à l’étape suivante. Si
|
||||
l’étape 1 échoue, on passe à la 2, et ainsi de suite. C’est une norme
|
||||
internationale, les VVER-1000 comme les REPs occidentaux appliquent ce
|
||||
principe.</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:700/1*Dlsj72YFDe2fcInjPmft7w.png" /></p>
|
||||
<p>Regardons chaque point succinctement.</p>
|
||||
<ol>
|
||||
<li><em>Prévention.</em></li>
|
||||
</ol>
|
||||
<p>La conception des réacteurs est pensée de façon à limiter la probabilité d’accident grave (typiquement une fusion du cœur), les opérateurs sont formés longtemps, évalués très fréquemment. La conception définie les matériels nécessaires au maintien des fonctions de sûreté. Sur l’EPR, on a par exemple 3 branches d’injection de sécurité indépendantes et redondantes pouvant chacune assurer leur fonction de sûreté à 100% (il y en a aussi une quatrième qu’on suppose en maintenance). Les matériels sont également testés. Certains matériels ne seront probablement jamais utilisés en fonctionnement normal sur tout la vie de la centrale, mais malgré cela il est important de tester chaque composant pour vérifier que dans une situation accidentelle éventuelle, le système associé serait apte à remplir sa fonction de sûreté. Concrètement on teste des pompes d’injection de sécurité, on fait des épreuves hydrauliques pour tester la résistance du circuit primaire à une pression 1.3 fois supérieure à la pression en fonctionnement normal, on entraine les opérateurs sur des situations incidentelles, etc</p>
|
||||
<p>La conception des réacteurs est pensée de façon à limiter la
|
||||
probabilité d’accident grave (typiquement une fusion du cœur), les
|
||||
opérateurs sont formés longtemps, évalués très fréquemment. La
|
||||
conception définie les matériels nécessaires au maintien des fonctions
|
||||
de sûreté. Sur l’EPR, on a par exemple 3 branches d’injection de
|
||||
sécurité indépendantes et redondantes pouvant chacune assurer leur
|
||||
fonction de sûreté à 100% (il y en a aussi une quatrième qu’on suppose
|
||||
en maintenance). Les matériels sont également testés. Certains matériels
|
||||
ne seront probablement jamais utilisés en fonctionnement normal sur tout
|
||||
la vie de la centrale, mais malgré cela il est important de tester
|
||||
chaque composant pour vérifier que dans une situation accidentelle
|
||||
éventuelle, le système associé serait apte à remplir sa fonction de
|
||||
sûreté. Concrètement on teste des pompes d’injection de sécurité, on
|
||||
fait des épreuves hydrauliques pour tester la résistance du circuit
|
||||
primaire à une pression 1.3 fois supérieure à la pression en
|
||||
fonctionnement normal, on entraine les opérateurs sur des situations
|
||||
incidentelles, etc</p>
|
||||
<p><em>2\. Détection et maitrise des accidents.</em></p>
|
||||
<p>La détection passe par de multiples capteurs (pression, température, niveau d’eau, niveau de radioactivité…). Cela implique également beaucoup d’automatismes (très présents sur les EPR&EPR2) pour limiter les erreurs humaines et assurer une réponse plus rapide. A titre d’exemple, le système d’arrêt automatique réacteur (AAR) est présent sur tous les réacteurs, même les plus anciens.</p>
|
||||
<p>La détection passe par de multiples capteurs (pression, température,
|
||||
niveau d’eau, niveau de radioactivité…). Cela implique également
|
||||
beaucoup d’automatismes (très présents sur les EPR&EPR2) pour
|
||||
limiter les erreurs humaines et assurer une réponse plus rapide. A titre
|
||||
d’exemple, le système d’arrêt automatique réacteur (AAR) est présent sur
|
||||
tous les réacteurs, même les plus anciens.</p>
|
||||
<p><em>3\. Maitrise des situations accidentelles.</em></p>
|
||||
<p>Maitriser une situation incidentelle qui pourrait mener à une situation accidentelle. Cela passe concrètement par une formation spécifique en accidentel pour les agents EDF. Les accidents sont classés en plusieurs familles, typiquement la perte de réfrigérant primaire (APRP), une rupture tube dans un générateur de vapeur (RTGV), perte électrique totale (PTEA), perte totale d’eau alimentaire (PTAE), rupture d’une tuyauterie d’eau ou de vapeur (RTE/RTV). Plus d’informations sur les APRP et les RTGV sur cet <a href="https://www.irsn.fr/savoir-comprendre/surete/quest-ce-quun-accident-nucleaire-sur-reacteur-eau-sous-pression">article</a> de l’IRSN de 2013.</p>
|
||||
<p>Maitriser une situation incidentelle qui pourrait mener à une
|
||||
situation accidentelle. Cela passe concrètement par une formation
|
||||
spécifique en accidentel pour les agents EDF. Les accidents sont classés
|
||||
en plusieurs familles, typiquement la perte de réfrigérant primaire
|
||||
(APRP), une rupture tube dans un générateur de vapeur (RTGV), perte
|
||||
électrique totale (PTEA), perte totale d’eau alimentaire (PTAE), rupture
|
||||
d’une tuyauterie d’eau ou de vapeur (RTE/RTV). Plus d’informations sur
|
||||
les APRP et les RTGV sur cet <a
|
||||
href="https://www.irsn.fr/savoir-comprendre/surete/quest-ce-quun-accident-nucleaire-sur-reacteur-eau-sous-pression">article</a>
|
||||
de l’IRSN de 2013.</p>
|
||||
<p><em>4\. Gestion des accidents graves.</em></p>
|
||||
<p>Pour en arriver là, il faut qu’on ait raté toutes les étapes précédentes, donc on passe en situation de gestion de l’accident pour en limiter les conséquences, pour éviter toute contamination à l’extérieur. Concrètement, cela passe par des systèmes passifs de captation du dihydrogène (un gaz inflammable qui est responsable des explosions des réacteurs 1,2,4 de Fukushima). Sur EPR, c’est un récupérateur de corium (une sorte de magma de combustible, d’acier de cuve et autres produits divers qu’on ne veut pas voir sur le gazon). Au niveau humain, cela passe par un plan national de gestion des accidents graves, et au niveau local par l’intervention de la FARN (on y reviendra).</p>
|
||||
<p>Pour en arriver là, il faut qu’on ait raté toutes les étapes
|
||||
précédentes, donc on passe en situation de gestion de l’accident pour en
|
||||
limiter les conséquences, pour éviter toute contamination à l’extérieur.
|
||||
Concrètement, cela passe par des systèmes passifs de captation du
|
||||
dihydrogène (un gaz inflammable qui est responsable des explosions des
|
||||
réacteurs 1,2,4 de Fukushima). Sur EPR, c’est un récupérateur de corium
|
||||
(une sorte de magma de combustible, d’acier de cuve et autres produits
|
||||
divers qu’on ne veut pas voir sur le gazon). Au niveau humain, cela
|
||||
passe par un plan national de gestion des accidents graves, et au niveau
|
||||
local par l’intervention de la FARN (on y reviendra).</p>
|
||||
<p><em>5\. Protection des populations.</em></p>
|
||||
<p>La dernière étape, en cas de rejets prévus ou ayant déjà eu lieu, il faut évacuer les personnes les plus proches du site nucléaire accidenté, pour limiter les conséquences sanitaires. L’exemple le plus connu est la distribution de pastille d’iodes. l’iode contenu dans ces pastilles se fixe sur la thyroïde pour la saturer et éviter que l’iode radioactif (qui vient directement du coeur) ne vienne s’y fixer. Il existe aussi des plans d’évacuation dans un rayon décidé par la préfecture sur la base des informations techniques données par EDF avec l’appui technique de l’IRSN.</p>
|
||||
<p>La dernière étape, en cas de rejets prévus ou ayant déjà eu lieu, il
|
||||
faut évacuer les personnes les plus proches du site nucléaire accidenté,
|
||||
pour limiter les conséquences sanitaires. L’exemple le plus connu est la
|
||||
distribution de pastille d’iodes. l’iode contenu dans ces pastilles se
|
||||
fixe sur la thyroïde pour la saturer et éviter que l’iode radioactif
|
||||
(qui vient directement du coeur) ne vienne s’y fixer. Il existe aussi
|
||||
des plans d’évacuation dans un rayon décidé par la préfecture sur la
|
||||
base des informations techniques données par EDF avec l’appui technique
|
||||
de l’IRSN.</p>
|
||||
<blockquote>
|
||||
<p><strong>Sur Zaporijia, on se situe à la limite entre les points 2 et 3, la situation pouvant évoluer assez rapidement. Pour l’instant, tout est au point 2, mais cela nécessite le maintien d’une alimentation électrique externe stable.</strong></p>
|
||||
<p><strong>Sur Zaporijia, on se situe à la limite entre les points 2 et
|
||||
3, la situation pouvant évoluer assez rapidement. Pour l’instant, tout
|
||||
est au point 2, mais cela nécessite le maintien d’une alimentation
|
||||
électrique externe stable.</strong></p>
|
||||
</blockquote>
|
||||
<h2 id="les-3-barrières-de-confinement">Les 3 barrières de confinement</h2>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:700/0*CJlt3vjn1Phi7eHu.png" /></p>
|
||||
<p>Si on parle de confinement, c’est celui des matières radioactives. Elles sont présentes dans le cœur, là où on met le combustible qui va chauffer le fluide primaire. L’objectif est d’éviter tout rejet incontrôlé dans l’environnement extérieur. Ce confinement est assuré par trois barrières successives.</p>
|
||||
<p>La première barrière se situe sur les assemblages de combustible (là où est l’uranium enrichi), une gaine en zirconium qui permet d’éviter de d’isoler les produits de fission de l’eau du circuit primaire.</p>
|
||||
<p>La seconde barrière est le “circuit primaire fermé”, fermé car c’est une boucle, les générateurs de vapeur constituent une interface d’échange thermique (pas d’échange de matière) qui empêche les éléments radioactifs de sortir. Si on a une rupture de gaine, les éléments radioactifs sont maintenus dans le fluide primaire, ce n’est pas une situation normale, mais au moins on ne rejette rien.</p>
|
||||
<p>La troisième est l’enceinte du Bâtiment Réacteur (BR), qui assure le confinement si les deux barrières précédentes ont échoué. Imaginez qu’on ait des ruptures de gaine de combustible et une fuite dans le circuit primaire, alors tout doit rester confiné à l’intérieur de la structure. Cette barrière a été brisée lors des deux accidents nucléaires majeurs, à savoir Tchernobyl puis Fukushima-Daichii (classés niveau 7 de l’échelle INES).</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:700/1*MvkT4pn60pQ-L4EIXabEaA.jpeg" /></p>
|
||||
<p>Echelle INES, <a href="https://lenergeek.com/2017/11/09/echelle-ines-surete-nucleaire/">Sûreté nucléaire : qu’est-ce que l’échelle INES ? (lenergeek.com)</a></p>
|
||||
<h2 id="les-3-barrières-de-confinement">Les 3 barrières de
|
||||
confinement</h2>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:700/0*CJlt3vjn1Phi7eHu.png" /></p>
|
||||
<p>Si on parle de confinement, c’est celui des matières radioactives.
|
||||
Elles sont présentes dans le cœur, là où on met le combustible qui va
|
||||
chauffer le fluide primaire. L’objectif est d’éviter tout rejet
|
||||
incontrôlé dans l’environnement extérieur. Ce confinement est assuré par
|
||||
trois barrières successives.</p>
|
||||
<p>La première barrière se situe sur les assemblages de combustible (là
|
||||
où est l’uranium enrichi), une gaine en zirconium qui permet d’éviter de
|
||||
d’isoler les produits de fission de l’eau du circuit primaire.</p>
|
||||
<p>La seconde barrière est le “circuit primaire fermé”, fermé car c’est
|
||||
une boucle, les générateurs de vapeur constituent une interface
|
||||
d’échange thermique (pas d’échange de matière) qui empêche les éléments
|
||||
radioactifs de sortir. Si on a une rupture de gaine, les éléments
|
||||
radioactifs sont maintenus dans le fluide primaire, ce n’est pas une
|
||||
situation normale, mais au moins on ne rejette rien.</p>
|
||||
<p>La troisième est l’enceinte du Bâtiment Réacteur (BR), qui assure le
|
||||
confinement si les deux barrières précédentes ont échoué. Imaginez qu’on
|
||||
ait des ruptures de gaine de combustible et une fuite dans le circuit
|
||||
primaire, alors tout doit rester confiné à l’intérieur de la structure.
|
||||
Cette barrière a été brisée lors des deux accidents nucléaires majeurs,
|
||||
à savoir Tchernobyl puis Fukushima-Daichii (classés niveau 7 de
|
||||
l’échelle INES).</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:700/1*MvkT4pn60pQ-L4EIXabEaA.jpeg" /></p>
|
||||
<p>Echelle INES, <a
|
||||
href="https://lenergeek.com/2017/11/09/echelle-ines-surete-nucleaire/">Sûreté
|
||||
nucléaire : qu’est-ce que l’échelle INES ? (lenergeek.com)</a></p>
|
||||
<h2 id="larrêt-automatique-réacteur">L’arrêt automatique réacteur</h2>
|
||||
<p>Un point également sur la rapidité d’arrêt de la réaction nucléaire, cela a lieu en quelques secondes ou minutes. On utilise les barres de contrôle, constituées de matériaux neutrophages, cela permet d’arrêter la réaction au niveau neutronique (à noter que la baisse de température augmente la réactivité il faut donc injecter du bore dans le fluide primaire pour éviter une reprise de la réaction).</p>
|
||||
<p>Les réacteurs VVER-1000/320 comme tous les REP exploités par EDF disposent d’un dispositif d’Arrêt Automatique Réacteur (AAR) qui consiste en une chute automatique des barres de contrôle . Un arrêt à chaud est la phase qui suit un AAR, «chaud» car le fluide primaire et le combustible (ainsi que l’inertie thermique des structures et la puissance des pompes primaires) ont besoin de temps pour refroidir. A Zaporijia, tous les réacteurs ont donc passé l’étape de l’AAR.</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:394/1*JsgPbKuNdTeEFKl7DCUPAw.jpeg" /></p>
|
||||
<p>Les barres de contrôle permettent de stopper la réaction nucléaire. Source: <a href="http://info.nucleaire.free.fr/mots.htm">Les mots (free.fr)</a></p>
|
||||
<h2 id="les-différents-états-dun-réacteur-nucléaire">Les différents états d’un réacteur nucléaire</h2>
|
||||
<p>Un point également sur la rapidité d’arrêt de la réaction nucléaire,
|
||||
cela a lieu en quelques secondes ou minutes. On utilise les barres de
|
||||
contrôle, constituées de matériaux neutrophages, cela permet d’arrêter
|
||||
la réaction au niveau neutronique (à noter que la baisse de température
|
||||
augmente la réactivité il faut donc injecter du bore dans le fluide
|
||||
primaire pour éviter une reprise de la réaction).</p>
|
||||
<p>Les réacteurs VVER-1000/320 comme tous les REP exploités par EDF
|
||||
disposent d’un dispositif d’Arrêt Automatique Réacteur (AAR) qui
|
||||
consiste en une chute automatique des barres de contrôle . Un arrêt à
|
||||
chaud est la phase qui suit un AAR, «chaud» car le fluide primaire et le
|
||||
combustible (ainsi que l’inertie thermique des structures et la
|
||||
puissance des pompes primaires) ont besoin de temps pour refroidir. A
|
||||
Zaporijia, tous les réacteurs ont donc passé l’étape de l’AAR.</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:394/1*JsgPbKuNdTeEFKl7DCUPAw.jpeg" /></p>
|
||||
<p>Les barres de contrôle permettent de stopper la réaction nucléaire.
|
||||
Source: <a href="http://info.nucleaire.free.fr/mots.htm">Les mots
|
||||
(free.fr)</a></p>
|
||||
<h2 id="les-différents-états-dun-réacteur-nucléaire">Les différents
|
||||
états d’un réacteur nucléaire</h2>
|
||||
<ul>
|
||||
<li>Fonctionnement en puissance ou marche de puissance intermédiaire, le réacteur produit beaucoup de chaleur, et de l’électricité, circuit primaire à plus de 300°C et 150 bars (petite barre grise en haut du graphe ci-dessous),</li>
|
||||
<li>Arrêt à chaud, la réaction nucléaire est à l’arrêt mais le circuit primaire est encore chaud, le pressuriseur est diphasique (vapeur et liquide),</li>
|
||||
<li>Arrêt à froid, la réaction nucléaire est à l’arrêt. La température du circuit primaire a été abaissée à quelques dizaines de degrés et il est à pression atmosphérique, le pressuriseur est monophasique liquide. Passer en arrêt froid nécessite une puissance résiduelle du combustible suffisamment faible (les échangeurs de chaleur sont moins efficaces à mesure que la température primaire baisse).</li>
|
||||
<li>Cœur déchargé: le réacteur ne produit plus de chaleur, il n’y a plus de combustible dans la cuve.</li>
|
||||
<li>Fonctionnement en puissance ou marche de puissance intermédiaire, le
|
||||
réacteur produit beaucoup de chaleur, et de l’électricité, circuit
|
||||
primaire à plus de 300°C et 150 bars (petite barre grise en haut du
|
||||
graphe ci-dessous),</li>
|
||||
<li>Arrêt à chaud, la réaction nucléaire est à l’arrêt mais le circuit
|
||||
primaire est encore chaud, le pressuriseur est diphasique (vapeur et
|
||||
liquide),</li>
|
||||
<li>Arrêt à froid, la réaction nucléaire est à l’arrêt. La température
|
||||
du circuit primaire a été abaissée à quelques dizaines de degrés et il
|
||||
est à pression atmosphérique, le pressuriseur est monophasique liquide.
|
||||
Passer en arrêt froid nécessite une puissance résiduelle du combustible
|
||||
suffisamment faible (les échangeurs de chaleur sont moins efficaces à
|
||||
mesure que la température primaire baisse).</li>
|
||||
<li>Cœur déchargé: le réacteur ne produit plus de chaleur, il n’y a plus
|
||||
de combustible dans la cuve.</li>
|
||||
</ul>
|
||||
<p>Pourquoi c’est important ici ? Car la situation d’arrêt détermine les besoins de refroidissement du circuit primaire, et donc le temps pour atteindre une situation stabilisée. Petite précision, ici la puissance résiduelle est au premier ordre liée à la chaleur résiduelle produite par les produtis de fission des assemblages, et pas à la température de l’eau du primaire.</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:635/1*HTnHOwrGDmE80R7Fc0RLEA.png" /></p>
|
||||
<p>Sachez qu’il existe une classification officielle, que je n’utilise pas ici à des fins de simplification. Il existe 6 états nommés de A à F (<a href="https://www.irsn.fr/sites/default/files/documents/larecherche/publications-documentation/collection-ouvrages-irsn/Elements sûreté REP chapitre 8.pdf">IRSN, p.259–260</a>).</p>
|
||||
<h2 id="la-piscine-dentreposage-de-combustible-usé">La piscine d’entreposage de combustible usé</h2>
|
||||
<p>C’est une piscine, avec une source de chaleur interne qui vient des assemblages combustibles, on regarde à quel point elle est remplie. C’est important car les assemblages usés sont encore chauds (décroissance radioactive des produits de fission) et doivent aussi être refroidis. Il y a donc un besoin électrique pour faire circuler l’eau de refroidissement.</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:700/1*5r2cf_LwOOSBpkX9Gf37gg.jpeg" /></p>
|
||||
<p>Pourquoi c’est important ici ? Car la situation d’arrêt détermine les
|
||||
besoins de refroidissement du circuit primaire, et donc le temps pour
|
||||
atteindre une situation stabilisée. Petite précision, ici la puissance
|
||||
résiduelle est au premier ordre liée à la chaleur résiduelle produite
|
||||
par les produtis de fission des assemblages, et pas à la température de
|
||||
l’eau du primaire.</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:635/1*HTnHOwrGDmE80R7Fc0RLEA.png" /></p>
|
||||
<p>Sachez qu’il existe une classification officielle, que je n’utilise
|
||||
pas ici à des fins de simplification. Il existe 6 états nommés de A à F
|
||||
(<a
|
||||
href="https://www.irsn.fr/sites/default/files/documents/larecherche/publications-documentation/collection-ouvrages-irsn/Elements sûreté REP chapitre 8.pdf">IRSN,
|
||||
p.259–260</a>).</p>
|
||||
<h2 id="la-piscine-dentreposage-de-combustible-usé">La piscine
|
||||
d’entreposage de combustible usé</h2>
|
||||
<p>C’est une piscine, avec une source de chaleur interne qui vient des
|
||||
assemblages combustibles, on regarde à quel point elle est remplie.
|
||||
C’est important car les assemblages usés sont encore chauds
|
||||
(décroissance radioactive des produits de fission) et doivent aussi être
|
||||
refroidis. Il y a donc un besoin électrique pour faire circuler l’eau de
|
||||
refroidissement.</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:700/1*5r2cf_LwOOSBpkX9Gf37gg.jpeg" /></p>
|
||||
<p>Piscine de la centrale nucléaire de Gravelines</p>
|
||||
<h1 id="situations-accidentelles-causées-par-des-agressions-externes">Situations accidentelles causées par des agressions externes</h1>
|
||||
<p>Que ce soit en cas de conflit armé, ou de phénomène naturels comme des inondations ou des séismes, il est important de regarder les points suivants.</p>
|
||||
<h1
|
||||
id="situations-accidentelles-causées-par-des-agressions-externes">Situations
|
||||
accidentelles causées par des agressions externes</h1>
|
||||
<p>Que ce soit en cas de conflit armé, ou de phénomène naturels comme
|
||||
des inondations ou des séismes, il est important de regarder les points
|
||||
suivants.</p>
|
||||
<ol>
|
||||
<li>Etat d’arrêt de chaque réacteur (chaud ou froid), pour évaluer quel est le besoin énergétique pour le refroidissement du cœur. Le temps est le meilleur allié face à la puissance résiduelle. Actuellement, sur le site de ZNPP, 5 réacteurs sur 6 sont en arrêt à froid, et depuis plusieurs semaines, voire plusieurs mois. Il reste donc environ 4MWth de puissance résiduelle par cœur en arrêt à froid. Pour le détail des calculs, allez lire cette <a href="https://www.scirp.org/journal/paperinformation.aspx?paperid=123255">étude</a>. Un réacteur est encore en arrêt à chaud pour la production de chaleur des villes autour. C’est le réacteur n°6, qui est surveillé de très près par l’AIEA car c’est celui qui nécessite le plus d’électricité pour son refroidissement.</li>
|
||||
<li>Etat d’arrêt de chaque réacteur (chaud ou froid), pour évaluer quel
|
||||
est le besoin énergétique pour le refroidissement du cœur. Le temps est
|
||||
le meilleur allié face à la puissance résiduelle. Actuellement, sur le
|
||||
site de ZNPP, 5 réacteurs sur 6 sont en arrêt à froid, et depuis
|
||||
plusieurs semaines, voire plusieurs mois. Il reste donc environ 4MWth de
|
||||
puissance résiduelle par cœur en arrêt à froid. Pour le détail des
|
||||
calculs, allez lire cette <a
|
||||
href="https://www.scirp.org/journal/paperinformation.aspx?paperid=123255">étude</a>.
|
||||
Un réacteur est encore en arrêt à chaud pour la production de chaleur
|
||||
des villes autour. C’est le réacteur n°6, qui est surveillé de très près
|
||||
par l’AIEA car c’est celui qui nécessite le plus d’électricité pour son
|
||||
refroidissement.</li>
|
||||
</ol>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:459/1*HKcYhBOiCDYCy0BPjKVQhw.jpeg" /></p>
|
||||
<p><em>Evolution de la puissance résiduelle d’un cœur de 3 000 MWth de puissance nominale après un arrêt en fin de cycle. (</em> <a href="https://www.sfen.org/rgn/zaporijia-quelle-est-la-situation-des-six-reacteurs-en-arrets-a-froid/"><em>SFEN</em></a> <em>)</em></p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:459/1*HKcYhBOiCDYCy0BPjKVQhw.jpeg" /></p>
|
||||
<p><em>Evolution de la puissance résiduelle d’un cœur de 3 000 MWth de
|
||||
puissance nominale après un arrêt en fin de cycle. (</em> <a
|
||||
href="https://www.sfen.org/rgn/zaporijia-quelle-est-la-situation-des-six-reacteurs-en-arrets-a-froid/"><em>SFEN</em></a>
|
||||
<em>)</em></p>
|
||||
<ol>
|
||||
<li>Alimentation électrique externe (lignes 330 & 750kV, 20 groupes électrogènes de secours de 6,6 kV chacun), pour alimenter les circuits de refroidissement. L’IRSN a d’ailleurs soulevé un point important sur les VVER-1000, la source de refroidissement ultime ne dispose pas d’une autonomie suffisante en accidentel, d’où l’intérêt de garder l’alimentation externe. Il est important de noter que depuis peu de temps, deux groupes électrogènes bunkerisés et donc protégés contre les actes de malveillance, sont installés à la ZNPP. Depuis l’accident de Fukushima, les centrales se sont adaptées en cas de situation de perte totale d’alimentation électrique, et disposent de moyens mobiles d’appoint en eau et en électricité. Concrètement, un camion avec une pompe thermique (à eau) est capable d’alimenter les générateurs de vapeur en eau froide, à partir d’une source froide à distance raisonnable du réacteur, pendant 3 jours. Cela peut s’avérer utile pour le réacteur en arrêt à chaud. Il existe aussi un groupe électrogène mobile, monté lui aussi sur un camion (3 jours d’autonomie).</li>
|
||||
<li>Alimentation électrique externe (lignes 330 & 750kV, 20 groupes
|
||||
électrogènes de secours de 6,6 kV chacun), pour alimenter les circuits
|
||||
de refroidissement. L’IRSN a d’ailleurs soulevé un point important sur
|
||||
les VVER-1000, la source de refroidissement ultime ne dispose pas d’une
|
||||
autonomie suffisante en accidentel, d’où l’intérêt de garder
|
||||
l’alimentation externe. Il est important de noter que depuis peu de
|
||||
temps, deux groupes électrogènes bunkerisés et donc protégés contre les
|
||||
actes de malveillance, sont installés à la ZNPP. Depuis l’accident de
|
||||
Fukushima, les centrales se sont adaptées en cas de situation de perte
|
||||
totale d’alimentation électrique, et disposent de moyens mobiles
|
||||
d’appoint en eau et en électricité. Concrètement, un camion avec une
|
||||
pompe thermique (à eau) est capable d’alimenter les générateurs de
|
||||
vapeur en eau froide, à partir d’une source froide à distance
|
||||
raisonnable du réacteur, pendant 3 jours. Cela peut s’avérer utile pour
|
||||
le réacteur en arrêt à chaud. Il existe aussi un groupe électrogène
|
||||
mobile, monté lui aussi sur un camion (3 jours d’autonomie).</li>
|
||||
</ol>
|
||||
<p>Sur les REP français, comme sur les VVER, l’alimentation électrique externe est essentielle à la sûreté et le système présente de nombreuses voies indépendantes et redondantes. Comme les 6 réacteurs de Zaporijia sont en situation d’arrêt, il n’est pas nécessaire d’étudier le <a href="https://www.linkedin.com/pulse/lilotage-dune-tranche-nucléaire-cest-quoi-florian-saulais/?originalSubdomain=fr">transitoire d’îlotage</a> (capacité d’un réacteur à s’isoler du réseau électrique tout en passant en fonctionnement autonome à puissance réduite).</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:700/0*l63k1rdtNPegVUZA.jpg" /></p>
|
||||
<p><em>Principe de l’alimentation électrique d’une centrale française de type REP (</em> <a href="https://www.irsn.fr/savoir-comprendre/surete/alimentations-electriques-sur-centrale-nucleaire-francaise"><em>IRSN</em></a> <em>)</em></p>
|
||||
<p>Sur les REP français, comme sur les VVER, l’alimentation électrique
|
||||
externe est essentielle à la sûreté et le système présente de nombreuses
|
||||
voies indépendantes et redondantes. Comme les 6 réacteurs de Zaporijia
|
||||
sont en situation d’arrêt, il n’est pas nécessaire d’étudier le <a
|
||||
href="https://www.linkedin.com/pulse/lilotage-dune-tranche-nucléaire-cest-quoi-florian-saulais/?originalSubdomain=fr">transitoire
|
||||
d’îlotage</a> (capacité d’un réacteur à s’isoler du réseau électrique
|
||||
tout en passant en fonctionnement autonome à puissance réduite).</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:700/0*l63k1rdtNPegVUZA.jpg" /></p>
|
||||
<p><em>Principe de l’alimentation électrique d’une centrale française de
|
||||
type REP (</em> <a
|
||||
href="https://www.irsn.fr/savoir-comprendre/surete/alimentations-electriques-sur-centrale-nucleaire-francaise"><em>IRSN</em></a>
|
||||
<em>)</em></p>
|
||||
<ol>
|
||||
<li><p>Remplissage du cœur, pour savoir s’il reste une chaleur résiduelle à évacuer. Ce point est très lié au point 1, puisqu’il s’agit de savoir quels sont les besoins en refroidissement pour le circuit primaire. Il serait pertinent de vider les cœurs de leurs assemblages, ainsi que les piscines, pour éviter tout risque radiologique. C’est évidemment très compliqué dans un contexte de guerre. Surtout que cela représente un volume de combustible très important, et une logistique complexe. Et certains assemblages sont trop chauds pour être évacués. D’ailleurs, si vous connaissez bien l’accident de Fukushima-Daiichi, vous pouvez rétorquer que le réacteur 4 avait pourtant un cœur vide, et a explosé malgré tout. Mais c’est parce que l’hydrogène du réacteur 3 s’est infiltré dans le 4 via une conduite commune.</p></li>
|
||||
<li><p>Remplissage des piscines du combustible usé, pour évaluer quel est le besoin énergétique pour le refroidissement de la piscine. (<a href="https://theconversation.com/cold-shutdown-reduces-risk-of-disaster-at-zaporizhzhia-nuclear-plant-but-combat-around-spent-fuel-still-poses-a-threat-190516">Article à ce propos</a>). C’est un point souvent négligé, voire oublié. Or les matières radioactives du bâtiment combustible ont elles aussi besoin d’être refroidies après un cycle dans le cœur, les produits de fission dégagent encore une chaleur résiduelle qu’il faut évacuer, sous peine d’évaporer l’eau des piscines, ce qui mènerait à une fusion des assemblages combustibles. A Fukushima-Daiichi, il y avait 1300 assemblages dans la piscine (environ 3 cœurs) du réacteur n°4. Or l’enceinte de confinement, qui contient le bâtiment combustible, était endommagée. Et une fusion de ces assemblages aurait incontestablement mené à un dégagement très important de radionucléides dans l’environnement. Un <a href="https://laradioactivite.com/energie_nucleaire/fukushima_piscines">article</a> qui détaille la situation à Fukushima. Ces évènements ont mené à la création de la Force d’Action Rapide Nucléaire (FARN), pour assurer des appoints en eau, air et en électricité (elle a d’autres rôles détaillés <a href="https://www.irsn.fr/sites/default/files/documents/connaissances/nucleaire_et_societe/expertise-pluraliste/irsn-anccli/4_presentation_FARN_P-Renoux_19juin2013.pdf">ici</a> ). Quelle est la situation des piscines de la ZNPP? Il semblerait qu’il y ait près de 3400 assemblages combustibles entreposés sur site (<a href="https://www.reuters.com/world/europe/vast-nuclear-plant-eye-war-ukraine-2022-08-08/">article de Reuters</a>). C’est beaucoup, et une perte d’eau de refroidissement des piscines pourrait mener à des rejets importants.</p></li>
|
||||
<li><p>Remplissage du cœur, pour savoir s’il reste une chaleur
|
||||
résiduelle à évacuer. Ce point est très lié au point 1, puisqu’il s’agit
|
||||
de savoir quels sont les besoins en refroidissement pour le circuit
|
||||
primaire. Il serait pertinent de vider les cœurs de leurs assemblages,
|
||||
ainsi que les piscines, pour éviter tout risque radiologique. C’est
|
||||
évidemment très compliqué dans un contexte de guerre. Surtout que cela
|
||||
représente un volume de combustible très important, et une logistique
|
||||
complexe. Et certains assemblages sont trop chauds pour être évacués.
|
||||
D’ailleurs, si vous connaissez bien l’accident de Fukushima-Daiichi,
|
||||
vous pouvez rétorquer que le réacteur 4 avait pourtant un cœur vide, et
|
||||
a explosé malgré tout. Mais c’est parce que l’hydrogène du réacteur 3
|
||||
s’est infiltré dans le 4 via une conduite commune.</p></li>
|
||||
<li><p>Remplissage des piscines du combustible usé, pour évaluer quel
|
||||
est le besoin énergétique pour le refroidissement de la piscine. (<a
|
||||
href="https://theconversation.com/cold-shutdown-reduces-risk-of-disaster-at-zaporizhzhia-nuclear-plant-but-combat-around-spent-fuel-still-poses-a-threat-190516">Article
|
||||
à ce propos</a>). C’est un point souvent négligé, voire oublié. Or les
|
||||
matières radioactives du bâtiment combustible ont elles aussi besoin
|
||||
d’être refroidies après un cycle dans le cœur, les produits de fission
|
||||
dégagent encore une chaleur résiduelle qu’il faut évacuer, sous peine
|
||||
d’évaporer l’eau des piscines, ce qui mènerait à une fusion des
|
||||
assemblages combustibles. A Fukushima-Daiichi, il y avait 1300
|
||||
assemblages dans la piscine (environ 3 cœurs) du réacteur n°4. Or
|
||||
l’enceinte de confinement, qui contient le bâtiment combustible, était
|
||||
endommagée. Et une fusion de ces assemblages aurait incontestablement
|
||||
mené à un dégagement très important de radionucléides dans
|
||||
l’environnement. Un <a
|
||||
href="https://laradioactivite.com/energie_nucleaire/fukushima_piscines">article</a>
|
||||
qui détaille la situation à Fukushima. Ces évènements ont mené à la
|
||||
création de la Force d’Action Rapide Nucléaire (FARN), pour assurer des
|
||||
appoints en eau, air et en électricité (elle a d’autres rôles détaillés
|
||||
<a
|
||||
href="https://www.irsn.fr/sites/default/files/documents/connaissances/nucleaire_et_societe/expertise-pluraliste/irsn-anccli/4_presentation_FARN_P-Renoux_19juin2013.pdf">ici</a>
|
||||
). Quelle est la situation des piscines de la ZNPP? Il semblerait qu’il
|
||||
y ait près de 3400 assemblages combustibles entreposés sur site (<a
|
||||
href="https://www.reuters.com/world/europe/vast-nuclear-plant-eye-war-ukraine-2022-08-08/">article
|
||||
de Reuters</a>). C’est beaucoup, et une perte d’eau de refroidissement
|
||||
des piscines pourrait mener à des rejets importants.</p></li>
|
||||
</ol>
|
||||
<blockquote>
|
||||
<p>« Selon une communication de l’Ukraine à l’AIEA en 2017, il y avait 3 354 assemblages de combustible usé dans l’installation de combustible usé sec et environ 1 984 assemblages de combustible usé dans les piscines. »</p>
|
||||
<p>« Selon une communication de l’Ukraine à l’AIEA en 2017, il y avait 3
|
||||
354 assemblages de combustible usé dans l’installation de combustible
|
||||
usé sec et environ 1 984 assemblages de combustible usé dans les
|
||||
piscines. »</p>
|
||||
</blockquote>
|
||||
<p>J’ajoute qu’il y a également des stockages «à sec» sur le site, on ne le fait pas en France, mais ailleurs dans le monde cela est pratiqué. L’avantage de ces conteneurs est l’absence de besoin en refroidissement par eau (pas besoin de pompe ni d’eau). En revanche, une explosion qui viendrait endommager pourrait conduire à des rejets de radionucléides. Je ne connais pas la résistance de ces conteneurs, je ne prononcerai pas sur leur comportement à proximité d’explosion. En revanche la nature des déchets nucléaires stockés à l’intérieur permet d’estimer qu’une explosion causerait une dispersion sur un rayon limité, une centaine de mètre environ d’après Olivier Dubois adjoint du directeur de l’expertise de sûreté de l’IRSN, dans cette <a href="https://www.youtube.com/watch?v=DOCx3dBHX5w&t=19s&ab_channel=L'Express">vidéo</a> de l’Express. Toujours depuis Fukushima, le site de ZNPP dispose d’une pompe thermique mobile autonome (<a href="https://www.irsn.fr/actualites/ukraine-dispositions-prevues-cas-perte-totale-alimentations-electriques-externes">autonomie de 3 jours</a>), montée sur un camion, assurant un appoint en eau dans la piscine combustible pour compenser les pertes d’eau par vaporisation. Ci-dessous, l’intervention qui a «inspiré» les ingénieurs en sûreté nucléaire pour cette solution d’appoint pour la piscine. C’était à Fukushima, sur l’unité n°4, pour les piscines combustibles.</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:500/1*NDjZ0EONbc6QbikN0Su4MA.jpeg" /></p>
|
||||
<p>Remettre de l’eau dans les piscines grâce aux lances des pompiers, assez original comme système de refroidissement, mais dans ce genre de situation, on fait avec ce qu’on peut.</p>
|
||||
<p>J’ajoute qu’il y a également des stockages «à sec» sur le site, on ne
|
||||
le fait pas en France, mais ailleurs dans le monde cela est pratiqué.
|
||||
L’avantage de ces conteneurs est l’absence de besoin en refroidissement
|
||||
par eau (pas besoin de pompe ni d’eau). En revanche, une explosion qui
|
||||
viendrait endommager pourrait conduire à des rejets de radionucléides.
|
||||
Je ne connais pas la résistance de ces conteneurs, je ne prononcerai pas
|
||||
sur leur comportement à proximité d’explosion. En revanche la nature des
|
||||
déchets nucléaires stockés à l’intérieur permet d’estimer qu’une
|
||||
explosion causerait une dispersion sur un rayon limité, une centaine de
|
||||
mètre environ d’après Olivier Dubois adjoint du directeur de l’expertise
|
||||
de sûreté de l’IRSN, dans cette <a
|
||||
href="https://www.youtube.com/watch?v=DOCx3dBHX5w&t=19s&ab_channel=L'Express">vidéo</a>
|
||||
de l’Express. Toujours depuis Fukushima, le site de ZNPP dispose d’une
|
||||
pompe thermique mobile autonome (<a
|
||||
href="https://www.irsn.fr/actualites/ukraine-dispositions-prevues-cas-perte-totale-alimentations-electriques-externes">autonomie
|
||||
de 3 jours</a>), montée sur un camion, assurant un appoint en eau dans
|
||||
la piscine combustible pour compenser les pertes d’eau par vaporisation.
|
||||
Ci-dessous, l’intervention qui a «inspiré» les ingénieurs en sûreté
|
||||
nucléaire pour cette solution d’appoint pour la piscine. C’était à
|
||||
Fukushima, sur l’unité n°4, pour les piscines combustibles.</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:500/1*NDjZ0EONbc6QbikN0Su4MA.jpeg" /></p>
|
||||
<p>Remettre de l’eau dans les piscines grâce aux lances des pompiers,
|
||||
assez original comme système de refroidissement, mais dans ce genre de
|
||||
situation, on fait avec ce qu’on peut.</p>
|
||||
<ol>
|
||||
<li>Intégrité du circuit primaire et du bâtiment réacteur, pour prévoir d’éventuels rejets extérieurs. On peut imaginer un endommagement du bâtiment réacteur par des missiles (ils va en falloir des costauds), est-ce problématique ? Oui, en situation accidentelle, car cet impact pourrait fragiliser la structure. Maintenant si on imagine (scénario très improbable) que le missile arrive à traverser l’enceinte du BR, alors il faut voir quel est l’état des pièces à l’intérieur. On parle d’un missile capable de transpercer 2.4m de béton armé, disposer d’une telle <a href="https://fr.wikipedia.org/wiki/Bunker_buster">arme</a> est peu courant. Il faut vraiment le faire exprès. On peut aussi dire que étant donné la taille des BR, il est peu probable d’endommager toutes les structures de sauvegarde, et l’avantage du VVER-1000 est qu’il présente une triple redondance des systèmes de sauvegarde (comme l’EPR), on peut donc imaginer un scénario où on aurait 2 systèmes de sauvegarde indisponibles, le dernier prendrait alors le relai.</li>
|
||||
<li>Intégrité du circuit primaire et du bâtiment réacteur, pour prévoir
|
||||
d’éventuels rejets extérieurs. On peut imaginer un endommagement du
|
||||
bâtiment réacteur par des missiles (ils va en falloir des costauds),
|
||||
est-ce problématique ? Oui, en situation accidentelle, car cet impact
|
||||
pourrait fragiliser la structure. Maintenant si on imagine (scénario
|
||||
très improbable) que le missile arrive à traverser l’enceinte du BR,
|
||||
alors il faut voir quel est l’état des pièces à l’intérieur. On parle
|
||||
d’un missile capable de transpercer 2.4m de béton armé, disposer d’une
|
||||
telle <a href="https://fr.wikipedia.org/wiki/Bunker_buster">arme</a> est
|
||||
peu courant. Il faut vraiment le faire exprès. On peut aussi dire que
|
||||
étant donné la taille des BR, il est peu probable d’endommager toutes
|
||||
les structures de sauvegarde, et l’avantage du VVER-1000 est qu’il
|
||||
présente une triple redondance des systèmes de sauvegarde (comme l’EPR),
|
||||
on peut donc imaginer un scénario où on aurait 2 systèmes de sauvegarde
|
||||
indisponibles, le dernier prendrait alors le relai.</li>
|
||||
</ol>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:700/1*eRktyRKxSxC2U71zmUkGqA.jpeg" /></p>
|
||||
<p>Enceinte du bâtiment réacteur n°4 après une frappe, novembre 2022 (<a href="https://en.wikipedia.org/wiki/Zaporizhzhia_Nuclear_Power_Plant#/media/File:ZNPP_unit_4_reactor_building_shell_damage.jpg">Wikipedia</a>)</p>
|
||||
<p>Il est également important de préciser que les <a href="https://snriu.gov.ua/en/news/russian-occupants-located-military-equipment-and-explosives-in-the-turbine-room-of-znpp-unit-4">Russes ont stocké du matériel militaire dans le bâtiment de la turbine</a> (circuit secondaire, sans risque radiologique). Ce sont des explosifs de combat, pas des anti-bunkers, une explosion dans cette zone causerait des dégâts irréversibles au secondaire, mais le risque radiologique serait très faible. Et l’endommagement du bâtiment réacteur serait très limité également.</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:700/0*XlRV4AjiiIH_9PK1.jpg" /></p>
|
||||
<p>Le bâtiment secondaire est séparé du BR, et n’est pas renforcé en béton armé.</p>
|
||||
<h2 id="les-stress-tests-sur-les-vver">Les “stress tests” sur les VVER</h2>
|
||||
<p>Il est également important de préciser que la sûreté s’améliore avec le temps, et la centrale nucléaire de Zaporijia ne fait pas exception. Pour les plus curieux, vous trouverez la liste des “stress test” auxquels elle a été soumise (<a href="https://www.ensreg.eu/sites/default/files/attachments/stress_test_nacp_ukraine_2021.pdf">ВСТУП</a>). C’est le retour d’expérience des trois précédents accidents nucléaires (Three Miles Island, Tchernobyl et Fukushima-Daichii) qui est utilisé principalement pour déterminer ces résistances.</p>
|
||||
<h1 id="les-besoins-actuels-des-réacteurs-de-zaporijia">Les besoins actuels des réacteurs de Zaporijia</h1>
|
||||
<p>Le besoin principal qui focalise l’attention de tous les techniciens et ingénieurs sur place est l’alimentation électrique externe. C’est le point d’intérêt de l’AIEA le plus critique. Dans son <a href="https://www.irsn.fr/actualites/ukraine-situation-centrale-zaporizhzhya-15-mai-2023">point de situation</a> du 15/05/2023 l’IRSN explique :</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:700/1*eRktyRKxSxC2U71zmUkGqA.jpeg" /></p>
|
||||
<p>Enceinte du bâtiment réacteur n°4 après une frappe, novembre 2022 (<a
|
||||
href="https://en.wikipedia.org/wiki/Zaporizhzhia_Nuclear_Power_Plant#/media/File:ZNPP_unit_4_reactor_building_shell_damage.jpg">Wikipedia</a>)</p>
|
||||
<p>Il est également important de préciser que les <a
|
||||
href="https://snriu.gov.ua/en/news/russian-occupants-located-military-equipment-and-explosives-in-the-turbine-room-of-znpp-unit-4">Russes
|
||||
ont stocké du matériel militaire dans le bâtiment de la turbine</a>
|
||||
(circuit secondaire, sans risque radiologique). Ce sont des explosifs de
|
||||
combat, pas des anti-bunkers, une explosion dans cette zone causerait
|
||||
des dégâts irréversibles au secondaire, mais le risque radiologique
|
||||
serait très faible. Et l’endommagement du bâtiment réacteur serait très
|
||||
limité également.</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:700/0*XlRV4AjiiIH_9PK1.jpg" /></p>
|
||||
<p>Le bâtiment secondaire est séparé du BR, et n’est pas renforcé en
|
||||
béton armé.</p>
|
||||
<h2 id="les-stress-tests-sur-les-vver">Les “stress tests” sur les
|
||||
VVER</h2>
|
||||
<p>Il est également important de préciser que la sûreté s’améliore avec
|
||||
le temps, et la centrale nucléaire de Zaporijia ne fait pas exception.
|
||||
Pour les plus curieux, vous trouverez la liste des “stress test”
|
||||
auxquels elle a été soumise (<a
|
||||
href="https://www.ensreg.eu/sites/default/files/attachments/stress_test_nacp_ukraine_2021.pdf">ВСТУП</a>).
|
||||
C’est le retour d’expérience des trois précédents accidents nucléaires
|
||||
(Three Miles Island, Tchernobyl et Fukushima-Daichii) qui est utilisé
|
||||
principalement pour déterminer ces résistances.</p>
|
||||
<h1 id="les-besoins-actuels-des-réacteurs-de-zaporijia">Les besoins
|
||||
actuels des réacteurs de Zaporijia</h1>
|
||||
<p>Le besoin principal qui focalise l’attention de tous les techniciens
|
||||
et ingénieurs sur place est l’alimentation électrique externe. C’est le
|
||||
point d’intérêt de l’AIEA le plus critique. Dans son <a
|
||||
href="https://www.irsn.fr/actualites/ukraine-situation-centrale-zaporizhzhya-15-mai-2023">point
|
||||
de situation</a> du 15/05/2023 l’IRSN explique :</p>
|
||||
<blockquote>
|
||||
<p>« Une seule ligne d’alimentation électrique de 750 kV est actuellement opérante pour assurer le fonctionnement des systèmes de refroidissement des assemblages combustibles. En cas de défaillance de cette alimentation électrique, 20 groupes électrogènes de secours sont disponibles pour prendre le relai et assurer l’alimentation électrique de la centrale. »</p>
|
||||
<p>« Une seule ligne d’alimentation électrique de 750 kV est
|
||||
actuellement opérante pour assurer le fonctionnement des systèmes de
|
||||
refroidissement des assemblages combustibles. En cas de défaillance de
|
||||
cette alimentation électrique, 20 groupes électrogènes de secours sont
|
||||
disponibles pour prendre le relai et assurer l’alimentation électrique
|
||||
de la centrale. »</p>
|
||||
</blockquote>
|
||||
<p>La centrale possède 4 lignes d’alimentation externe de 750kV, d’après les informations disponibles à l’heure actuelle, une seule fonctionne parfaitement. Concernant les groupes électrogènes de secours, la ZNPP a besoin de personnel pour la maintenance, de pièces détachées, et évidemment, de combustible pour les alimenter. Précisons également que l’approvisionnement en combustible serait plus aisé par l’ouest, la zone étant sous contrôle ukrainien, mais le site demeure encore sous contrôle russe.</p>
|
||||
<p><a href="https://miro.medium.com/v2/resize:fit:700/0*3Y6Lp42vHwGOoOcs">https://miro.medium.com/v2/resize:fit:700/0*3Y6Lp42vHwGOoOcs</a></p>
|
||||
<p><a href="https://twitter.com/War_Mapper">Situation au 31/05/2023</a></p>
|
||||
<p>La centrale a également besoin d’une source froide pour évacuer la puissance résiduelle, la <a href="https://twitter.com/Podolyak_M/status/1665954154567593984">récente attaque</a> du barrage de Kakhovka montre que la source froide habituelle est menacée, le niveau d’eau baisse d’environ 5cm par heure. Le site de Zaporijia est conçu en temps normal pour utiliser le réservoir “cooling pond” comme réservoir tampon pour s’affranchir des variations de débit du fleuve Dniepr. Les réacteurs étant à l’arrêt on utilise un système d’évacuation de la chaleur par air, où l’eau est projetée via des “sprinklers”. Il faut compenser cette perte d’eau par évaporation par un appoint en eau, et cet appoint en eau peut suffire quelques semaines selon l’IRSN (<a href="https://www.irsn.fr/actualites/ukraine-consequences-lendommagement-barrage-kakhovka-sur-centrale-nucleaire-zaporizhzhya">point de situation du 7 juin 2023</a>), voire mois selon l’AIEA (<a href="https://twitter.com/rafaelmgrossi/status/1666009625869549574">Déclaration du directeur général de l’AIEA</a>).</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:700/1*nXE-nC_qjOUxvBrAg6byfw.png" /></p>
|
||||
<p>La centrale possède 4 lignes d’alimentation externe de 750kV, d’après
|
||||
les informations disponibles à l’heure actuelle, une seule fonctionne
|
||||
parfaitement. Concernant les groupes électrogènes de secours, la ZNPP a
|
||||
besoin de personnel pour la maintenance, de pièces détachées, et
|
||||
évidemment, de combustible pour les alimenter. Précisons également que
|
||||
l’approvisionnement en combustible serait plus aisé par l’ouest, la zone
|
||||
étant sous contrôle ukrainien, mais le site demeure encore sous contrôle
|
||||
russe.</p>
|
||||
<p><a
|
||||
href="https://miro.medium.com/v2/resize:fit:700/0*3Y6Lp42vHwGOoOcs">https://miro.medium.com/v2/resize:fit:700/0*3Y6Lp42vHwGOoOcs</a></p>
|
||||
<p><a href="https://twitter.com/War_Mapper">Situation au
|
||||
31/05/2023</a></p>
|
||||
<p>La centrale a également besoin d’une source froide pour évacuer la
|
||||
puissance résiduelle, la <a
|
||||
href="https://twitter.com/Podolyak_M/status/1665954154567593984">récente
|
||||
attaque</a> du barrage de Kakhovka montre que la source froide
|
||||
habituelle est menacée, le niveau d’eau baisse d’environ 5cm par heure.
|
||||
Le site de Zaporijia est conçu en temps normal pour utiliser le
|
||||
réservoir “cooling pond” comme réservoir tampon pour s’affranchir des
|
||||
variations de débit du fleuve Dniepr. Les réacteurs étant à l’arrêt on
|
||||
utilise un système d’évacuation de la chaleur par air, où l’eau est
|
||||
projetée via des “sprinklers”. Il faut compenser cette perte d’eau par
|
||||
évaporation par un appoint en eau, et cet appoint en eau peut suffire
|
||||
quelques semaines selon l’IRSN (<a
|
||||
href="https://www.irsn.fr/actualites/ukraine-consequences-lendommagement-barrage-kakhovka-sur-centrale-nucleaire-zaporizhzhya">point
|
||||
de situation du 7 juin 2023</a>), voire mois selon l’AIEA (<a
|
||||
href="https://twitter.com/rafaelmgrossi/status/1666009625869549574">Déclaration
|
||||
du directeur général de l’AIEA</a>).</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:700/1*nXE-nC_qjOUxvBrAg6byfw.png" /></p>
|
||||
<h2 id="quelle-temporalité">Quelle temporalité ?</h2>
|
||||
<ul>
|
||||
<li>Les lignes haute tension peuvent être réparées en une dizaine d’heures (retour d’expérience depuis le début de la guerre).</li>
|
||||
<li>Les réacteurs en arrêt à froid comme en arrêt à chaud étant à l’arrêt d’un point de vue neutronique, la chaleur résiduelle et la température du primaire sont les deux paramètres à surveiller. Le réacteur n°5, en AAC a besoin de plus de refroidissement, sous peine de voir la température de son primaire monter, donc sa pression, jusqu’à un seuil hors des limites usuelles d’exploitation du cœur.</li>
|
||||
<li>Les générateurs diesel de secours permettent de tenir environ 15 jours avec les besoins actuels du site, limite en terme de combustible. Les générateurs ne sont pas conçus pour fonctionner plusieurs semaines non plus, il y aura des maintenance à réaliser. (S<a href="https://world-nuclear-news.org/Articles/Emergency-generators-in-use-as-Zaporizhzhia-loses">ource</a>)</li>
|
||||
<li>La fusion du cœur pourrait ensuite intervenir sous 10 jours à compter de l’arrêt de tous les générateurs diesel de secours (<a href="https://www.irsn.fr/actualites/ukraine-situation-centrale-zaporizhzhya-15-mai-2023">Source</a>)</li>
|
||||
<li>Cela laisse donc 25 jours maximum pour anticiper la situation. Sachant que la situation commencera à se dégrader dès le 15e jour (faute d’approvisionnement suffisant en carburant), où les groupes électrogènes de secours seront à sec. C’est donc en réalité moins. Mais ce délai est bienvenu malgré tout, il permet une éventuelle intervention d’urgence. Le temps est le pire ennemi quand on a un réacteur en arrêt chaud. Pour prendre un cas similaire, ce qui s’est passé à Fukushima peut se résumer assez simplement, l’arrêt automatique réacteur qui a immédiatement suivi la détection du séisme s’est déroulé comme il le fallait, le problème a été d’évacuer la puissance résiduelle. Les opérateurs n’ont pas réussi cette mission.</li>
|
||||
<li>Passé ce délai, une fusion du cœur des réacteurs est possible, sur 6 réacteurs en simultané. Ces fusions mèneraient incontestablement à des rejets massifs. La présence de recombineur à hydrogène passifs (qui n’ont pas besoin d’électricité) est plutôt rassurante pour éviter un endommagement de la troisième barrière (ce qui n’était pas le cas à Fukushima).</li>
|
||||
<li>Quelques temps après la fusion des cœurs de réacteurs va aussi se poser la question des piscines de combustible usé. Elles ont aussi besoin d’être refroidies.</li>
|
||||
<li>Le VVER-1000 ne dispose pas d’un récupérateur à corium contrairement au VVER-1200 (critère de sûreté de la 3e génération, comme sur l’EPR), ce qui rend le risque de contamination externe plus important. Au delà d’évacuer le corium dans un endroit pour le refroidir, l’intérêt du <em>core catcher</em> est d’éviter l’ explosion de vapeur (forte chaleur et eau liquide…), donc cela participe à une préservation de la structure du BR.</li>
|
||||
<li>Les lignes haute tension peuvent être réparées en une dizaine
|
||||
d’heures (retour d’expérience depuis le début de la guerre).</li>
|
||||
<li>Les réacteurs en arrêt à froid comme en arrêt à chaud étant à
|
||||
l’arrêt d’un point de vue neutronique, la chaleur résiduelle et la
|
||||
température du primaire sont les deux paramètres à surveiller. Le
|
||||
réacteur n°5, en AAC a besoin de plus de refroidissement, sous peine de
|
||||
voir la température de son primaire monter, donc sa pression, jusqu’à un
|
||||
seuil hors des limites usuelles d’exploitation du cœur.</li>
|
||||
<li>Les générateurs diesel de secours permettent de tenir environ 15
|
||||
jours avec les besoins actuels du site, limite en terme de combustible.
|
||||
Les générateurs ne sont pas conçus pour fonctionner plusieurs semaines
|
||||
non plus, il y aura des maintenance à réaliser. (S<a
|
||||
href="https://world-nuclear-news.org/Articles/Emergency-generators-in-use-as-Zaporizhzhia-loses">ource</a>)</li>
|
||||
<li>La fusion du cœur pourrait ensuite intervenir sous 10 jours à
|
||||
compter de l’arrêt de tous les générateurs diesel de secours (<a
|
||||
href="https://www.irsn.fr/actualites/ukraine-situation-centrale-zaporizhzhya-15-mai-2023">Source</a>)</li>
|
||||
<li>Cela laisse donc 25 jours maximum pour anticiper la situation.
|
||||
Sachant que la situation commencera à se dégrader dès le 15e jour (faute
|
||||
d’approvisionnement suffisant en carburant), où les groupes électrogènes
|
||||
de secours seront à sec. C’est donc en réalité moins. Mais ce délai est
|
||||
bienvenu malgré tout, il permet une éventuelle intervention d’urgence.
|
||||
Le temps est le pire ennemi quand on a un réacteur en arrêt chaud. Pour
|
||||
prendre un cas similaire, ce qui s’est passé à Fukushima peut se résumer
|
||||
assez simplement, l’arrêt automatique réacteur qui a immédiatement suivi
|
||||
la détection du séisme s’est déroulé comme il le fallait, le problème a
|
||||
été d’évacuer la puissance résiduelle. Les opérateurs n’ont pas réussi
|
||||
cette mission.</li>
|
||||
<li>Passé ce délai, une fusion du cœur des réacteurs est possible, sur 6
|
||||
réacteurs en simultané. Ces fusions mèneraient incontestablement à des
|
||||
rejets massifs. La présence de recombineur à hydrogène passifs (qui
|
||||
n’ont pas besoin d’électricité) est plutôt rassurante pour éviter un
|
||||
endommagement de la troisième barrière (ce qui n’était pas le cas à
|
||||
Fukushima).</li>
|
||||
<li>Quelques temps après la fusion des cœurs de réacteurs va aussi se
|
||||
poser la question des piscines de combustible usé. Elles ont aussi
|
||||
besoin d’être refroidies.</li>
|
||||
<li>Le VVER-1000 ne dispose pas d’un récupérateur à corium contrairement
|
||||
au VVER-1200 (critère de sûreté de la 3e génération, comme sur l’EPR),
|
||||
ce qui rend le risque de contamination externe plus important. Au delà
|
||||
d’évacuer le corium dans un endroit pour le refroidir, l’intérêt du
|
||||
<em>core catcher</em> est d’éviter l’ explosion de vapeur (forte chaleur
|
||||
et eau liquide…), donc cela participe à une préservation de la structure
|
||||
du BR.</li>
|
||||
</ul>
|
||||
<p>Un besoin essentiel est également celui d’avoir du personnel qualifié sur place, et le contexte de guerre n’aide pas. Une centrale sûre sans humains n’existe pas, et le stress constant auquel sont soumises les équipes ne favorise pas un environnement sain pour travailler dans une centrale nucléaire.</p>
|
||||
<p>Ce délai de 25 jours (grand maximum) est crucial, car si les autorités mondiales savent, grâce aux informations de l’AIEA, que la centrale de Zaporijjia a absolument besoin d’électricité, cela laisse du temps pour réfléchir à un plan d’action urgent. Et donc toute forme d’opposition à une aide technique internationale serait considérée comme criminelle. D’autant que les alimentations électriques ont toujours été réparées, au prix de nombreuses vies, dans des délais records.</p>
|
||||
<p>Un besoin essentiel est également celui d’avoir du personnel qualifié
|
||||
sur place, et le contexte de guerre n’aide pas. Une centrale sûre sans
|
||||
humains n’existe pas, et le stress constant auquel sont soumises les
|
||||
équipes ne favorise pas un environnement sain pour travailler dans une
|
||||
centrale nucléaire.</p>
|
||||
<p>Ce délai de 25 jours (grand maximum) est crucial, car si les
|
||||
autorités mondiales savent, grâce aux informations de l’AIEA, que la
|
||||
centrale de Zaporijjia a absolument besoin d’électricité, cela laisse du
|
||||
temps pour réfléchir à un plan d’action urgent. Et donc toute forme
|
||||
d’opposition à une aide technique internationale serait considérée comme
|
||||
criminelle. D’autant que les alimentations électriques ont toujours été
|
||||
réparées, au prix de nombreuses vies, dans des délais records.</p>
|
||||
<h2 id="quels-rejets">Quels rejets ?</h2>
|
||||
<p>Les réacteurs étant tous à l’arrêt, la décroissance radioactive a fait son effet sur le combustible. La décroissance radioactive est un phénomène naturel qui caractérise la baisse du nombre de noyaux instables dans un échantillon de matière. L’IRSN explique :</p>
|
||||
<p>Les réacteurs étant tous à l’arrêt, la décroissance radioactive a
|
||||
fait son effet sur le combustible. La décroissance radioactive est un
|
||||
phénomène naturel qui caractérise la baisse du nombre de noyaux
|
||||
instables dans un échantillon de matière. L’IRSN explique :</p>
|
||||
<blockquote>
|
||||
<p>« Compte tenu des délais importants depuis l’arrêt du dernier réacteur, les rejets en iode notamment, bien qu’importants, seraient bien plus faibles que pour un réacteur en fonctionnement, du fait de la décroissance radioactive. La fusion du combustible entreposé dans la piscine, située dans l’enceinte de confinement du réacteur, interviendrait ensuite, entraînant des rejets supplémentaires. »</p>
|
||||
<p>« Compte tenu des délais importants depuis l’arrêt du dernier
|
||||
réacteur, les rejets en iode notamment, bien qu’importants, seraient
|
||||
bien plus faibles que pour un réacteur en fonctionnement, du fait de la
|
||||
décroissance radioactive. La fusion du combustible entreposé dans la
|
||||
piscine, située dans l’enceinte de confinement du réacteur,
|
||||
interviendrait ensuite, entraînant des rejets supplémentaires. »</p>
|
||||
</blockquote>
|
||||
<p>Pour comprendre de phénomène de décroissance, une courbe sur l’accident de Fukushima. On voit qu’il suffit d’une quarantaine de jours à l’Iode-131 pour diviser son activité par 10, ce qui est la situation des cinq réacteurs de ZNPP en arrêt à froid. Donc si un accident devait se produire sur un des réacteurs en arrêt à froid, les comprimés d’iode distribués en cas d’accident ne serviraient strictement à rien.</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:500/1*rWPD0bnchgenFflQWBStVw.jpeg" /></p>
|
||||
<p><a href="https://laradioactivite.com/le-phenomene/liode131">L’Iode-131 — laradioactivite.com</a></p>
|
||||
<p>Il est impossible (à l’heure actuelle) de faire une modélisation fidèle à la réalité, des rejets de radionucléides, cela dépend de la sévérité de l’accident, de la durée des rejets et de la météo (selon les vents dominants et les pluies).</p>
|
||||
<p>Pour comprendre de phénomène de décroissance, une courbe sur
|
||||
l’accident de Fukushima. On voit qu’il suffit d’une quarantaine de jours
|
||||
à l’Iode-131 pour diviser son activité par 10, ce qui est la situation
|
||||
des cinq réacteurs de ZNPP en arrêt à froid. Donc si un accident devait
|
||||
se produire sur un des réacteurs en arrêt à froid, les comprimés d’iode
|
||||
distribués en cas d’accident ne serviraient strictement à rien.</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:500/1*rWPD0bnchgenFflQWBStVw.jpeg" /></p>
|
||||
<p><a
|
||||
href="https://laradioactivite.com/le-phenomene/liode131">L’Iode-131 —
|
||||
laradioactivite.com</a></p>
|
||||
<p>Il est impossible (à l’heure actuelle) de faire une modélisation
|
||||
fidèle à la réalité, des rejets de radionucléides, cela dépend de la
|
||||
sévérité de l’accident, de la durée des rejets et de la météo (selon les
|
||||
vents dominants et les pluies).</p>
|
||||
<p>Panache radioactif de Tchernobyl.</p>
|
||||
<p>Il existe une <a href="https://www.pravda.com.ua/eng/news/2022/08/18/7363806/">modélisation</a> déjà assez ancienne, elle est intéressante pour expliquer la dispersion du nuage, mais c’est simplement pour donner une idée. Maintenant, si la situation devait empirer, une modélisation des rejets sera établie par les experts en peu de temps, sur la base des informations météorologiques disponibles.</p>
|
||||
<p>Il existe une <a
|
||||
href="https://www.pravda.com.ua/eng/news/2022/08/18/7363806/">modélisation</a>
|
||||
déjà assez ancienne, elle est intéressante pour expliquer la dispersion
|
||||
du nuage, mais c’est simplement pour donner une idée. Maintenant, si la
|
||||
situation devait empirer, une modélisation des rejets sera établie par
|
||||
les experts en peu de temps, sur la base des informations
|
||||
météorologiques disponibles.</p>
|
||||
<h1 id="conclusion">Conclusion</h1>
|
||||
<p>Ce ne sont pas les tirs de missiles sur le bâtiment réacteur qu’il faut craindre, mais la perte totale d’alimentation électrique externe. Les explosifs sont bien plus susceptibles de venir endommager les conteneurs de déchets radioactifs secs et les piscines combustibles. La situation est stable tant que cette ligne de 750kV est connectée aux 6 réacteurs, et les diesels de secours sont prêts à prendre le relai, à condition d’avoir un approvisionnement suffisant en carburant, et ce n’est pas une solution durable sur le temps long.</p>
|
||||
<p>La situation est unique, mais n’a rien d’un accident nucléaire, cela dépend de beaucoup de facteurs encore incertains. Depuis 15 mois la centrale est au cœur d’un conflit intense et les équipes sur place ont toujours maitrisé les situations incidentelles en des temps records.</p>
|
||||
<p>De plus, la présence permanente d’équipes de l’AIEA sur place permet d’avoir des informations fiables en temps réel, et ces informations sont communiquées à l’ensemble des experts techniques de la sûreté nucléaire du monde entier. Ces informations sont précieuses.</p>
|
||||
<p>Ce ne sont pas les tirs de missiles sur le bâtiment réacteur qu’il
|
||||
faut craindre, mais la perte totale d’alimentation électrique externe.
|
||||
Les explosifs sont bien plus susceptibles de venir endommager les
|
||||
conteneurs de déchets radioactifs secs et les piscines combustibles. La
|
||||
situation est stable tant que cette ligne de 750kV est connectée aux 6
|
||||
réacteurs, et les diesels de secours sont prêts à prendre le relai, à
|
||||
condition d’avoir un approvisionnement suffisant en carburant, et ce
|
||||
n’est pas une solution durable sur le temps long.</p>
|
||||
<p>La situation est unique, mais n’a rien d’un accident nucléaire, cela
|
||||
dépend de beaucoup de facteurs encore incertains. Depuis 15 mois la
|
||||
centrale est au cœur d’un conflit intense et les équipes sur place ont
|
||||
toujours maitrisé les situations incidentelles en des temps records.</p>
|
||||
<p>De plus, la présence permanente d’équipes de l’AIEA sur place permet
|
||||
d’avoir des informations fiables en temps réel, et ces informations sont
|
||||
communiquées à l’ensemble des experts techniques de la sûreté nucléaire
|
||||
du monde entier. Ces informations sont précieuses.</p>
|
||||
<p>Quelques derniers rappels avant de terminer :</p>
|
||||
<ul>
|
||||
<li>Utiliser une centrale nucléaire pour stocker des armes est irresponsable, s’en servir de bouclier l’est tout autant.</li>
|
||||
<li>Une centrale nucléaire n’est pas ni une cible, ni une arme. Se référer à <a href="https://www.ohchr.org/fr/instruments-mechanisms/instruments/protocol-additional-geneva-conventions-12-august-1949-and">l’article 56 du protocole additionnel aux Conventions de Genève du 12 août 1949 relatif à la protection des victimes des conflits armés internationaux (Protocole I)</a> : «Les ouvrages d’art ou installations contenant des forces dangereuses, à savoir les barrages, les digues et les centrales nucléaires de production d’énergie électrique, ne seront pas l’objet d’attaques, même s’ils constituent des objectifs militaires».</li>
|
||||
<li>Dans un conflit armé, l’ennemi vise d’abord le réseau, bien plus simple à détruire car plus fragile. Prendre le contrôle du site de Zaporijia est stratégique pour déstabiliser l’Ukraine. C’est en tant qu’installation électrique de grande puissance que cette centrale fait l’objet de tant d’attention, pas en tant qu’objet nucléaire. Un article à ce propos. <a href="https://geopoliticalfutures.com/ukraines-vulnerable-power-grid/">Ukraine’s Vulnerable Power Grid — Geopolitical Futures</a>.</li>
|
||||
<li>C’était assez exhaustif, à dessein, je ne peux pas faire à la fois trop technique et accessible, il faut nécessairement trouver un juste milieu.</li>
|
||||
<li>Utiliser une centrale nucléaire pour stocker des armes est
|
||||
irresponsable, s’en servir de bouclier l’est tout autant.</li>
|
||||
<li>Une centrale nucléaire n’est pas ni une cible, ni une arme. Se
|
||||
référer à <a
|
||||
href="https://www.ohchr.org/fr/instruments-mechanisms/instruments/protocol-additional-geneva-conventions-12-august-1949-and">l’article
|
||||
56 du protocole additionnel aux Conventions de Genève du 12 août 1949
|
||||
relatif à la protection des victimes des conflits armés internationaux
|
||||
(Protocole I)</a> : «Les ouvrages d’art ou installations contenant des
|
||||
forces dangereuses, à savoir les barrages, les digues et les centrales
|
||||
nucléaires de production d’énergie électrique, ne seront pas l’objet
|
||||
d’attaques, même s’ils constituent des objectifs militaires».</li>
|
||||
<li>Dans un conflit armé, l’ennemi vise d’abord le réseau, bien plus
|
||||
simple à détruire car plus fragile. Prendre le contrôle du site de
|
||||
Zaporijia est stratégique pour déstabiliser l’Ukraine. C’est en tant
|
||||
qu’installation électrique de grande puissance que cette centrale fait
|
||||
l’objet de tant d’attention, pas en tant qu’objet nucléaire. Un article
|
||||
à ce propos. <a
|
||||
href="https://geopoliticalfutures.com/ukraines-vulnerable-power-grid/">Ukraine’s
|
||||
Vulnerable Power Grid — Geopolitical Futures</a>.</li>
|
||||
<li>C’était assez exhaustif, à dessein, je ne peux pas faire à la fois
|
||||
trop technique et accessible, il faut nécessairement trouver un juste
|
||||
milieu.</li>
|
||||
</ul>
|
||||
<p>Je tiens à conclure cet article en rendant hommage aux travailleurs et travailleuses du site de Zaporijia, qui ont pour beaucoup déjà sacrifié leur vie pour rétablir cette liaison électrique, ils se battent au quotidien pour protéger l’Europe.</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:700/1*fxm46ADoTLqfpafYBLDC-A.jpeg" /></p>
|
||||
<p>Je tiens à conclure cet article en rendant hommage aux travailleurs
|
||||
et travailleuses du site de Zaporijia, qui ont pour beaucoup déjà
|
||||
sacrifié leur vie pour rétablir cette liaison électrique, ils se battent
|
||||
au quotidien pour protéger l’Europe.</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:700/1*fxm46ADoTLqfpafYBLDC-A.jpeg" /></p>
|
||||
<p>Publié en Juin 2023.</p>
|
||||
</body>
|
||||
</html>
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -160,165 +160,647 @@ input, button, textarea, select {
|
|||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||||
<title>dragonfeu_blog</title>
|
||||
<style>
|
||||
html {
|
||||
color: #1a1a1a;
|
||||
background-color: #fdfdfd;
|
||||
}
|
||||
body {
|
||||
margin: 0 auto;
|
||||
max-width: 36em;
|
||||
padding-left: 50px;
|
||||
padding-right: 50px;
|
||||
padding-top: 50px;
|
||||
padding-bottom: 50px;
|
||||
hyphens: auto;
|
||||
overflow-wrap: break-word;
|
||||
text-rendering: optimizeLegibility;
|
||||
font-kerning: normal;
|
||||
}
|
||||
@media (max-width: 600px) {
|
||||
body {
|
||||
font-size: 0.9em;
|
||||
padding: 12px;
|
||||
}
|
||||
h1 {
|
||||
font-size: 1.8em;
|
||||
}
|
||||
}
|
||||
@media print {
|
||||
html {
|
||||
background-color: white;
|
||||
}
|
||||
body {
|
||||
background-color: transparent;
|
||||
color: black;
|
||||
font-size: 12pt;
|
||||
}
|
||||
p, h2, h3 {
|
||||
orphans: 3;
|
||||
widows: 3;
|
||||
}
|
||||
h2, h3, h4 {
|
||||
page-break-after: avoid;
|
||||
}
|
||||
}
|
||||
p {
|
||||
margin: 1em 0;
|
||||
}
|
||||
a {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
a:visited {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
img {
|
||||
max-width: 100%;
|
||||
}
|
||||
h1, h2, h3, h4, h5, h6 {
|
||||
margin-top: 1.4em;
|
||||
}
|
||||
h5, h6 {
|
||||
font-size: 1em;
|
||||
font-style: italic;
|
||||
}
|
||||
h6 {
|
||||
font-weight: normal;
|
||||
}
|
||||
ol, ul {
|
||||
padding-left: 1.7em;
|
||||
margin-top: 1em;
|
||||
}
|
||||
li > ol, li > ul {
|
||||
margin-top: 0;
|
||||
}
|
||||
blockquote {
|
||||
margin: 1em 0 1em 1.7em;
|
||||
padding-left: 1em;
|
||||
border-left: 2px solid #e6e6e6;
|
||||
color: #606060;
|
||||
}
|
||||
code {
|
||||
font-family: Menlo, Monaco, Consolas, 'Lucida Console', monospace;
|
||||
font-size: 85%;
|
||||
margin: 0;
|
||||
hyphens: manual;
|
||||
}
|
||||
pre {
|
||||
margin: 1em 0;
|
||||
overflow: auto;
|
||||
}
|
||||
pre code {
|
||||
padding: 0;
|
||||
overflow: visible;
|
||||
overflow-wrap: normal;
|
||||
}
|
||||
.sourceCode {
|
||||
background-color: transparent;
|
||||
overflow: visible;
|
||||
}
|
||||
hr {
|
||||
background-color: #1a1a1a;
|
||||
border: none;
|
||||
height: 1px;
|
||||
margin: 1em 0;
|
||||
}
|
||||
table {
|
||||
margin: 1em 0;
|
||||
border-collapse: collapse;
|
||||
width: 100%;
|
||||
overflow-x: auto;
|
||||
display: block;
|
||||
font-variant-numeric: lining-nums tabular-nums;
|
||||
}
|
||||
table caption {
|
||||
margin-bottom: 0.75em;
|
||||
}
|
||||
tbody {
|
||||
margin-top: 0.5em;
|
||||
border-top: 1px solid #1a1a1a;
|
||||
border-bottom: 1px solid #1a1a1a;
|
||||
}
|
||||
th {
|
||||
border-top: 1px solid #1a1a1a;
|
||||
padding: 0.25em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
td {
|
||||
padding: 0.125em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
header {
|
||||
margin-bottom: 4em;
|
||||
text-align: center;
|
||||
}
|
||||
#TOC li {
|
||||
list-style: none;
|
||||
}
|
||||
#TOC ul {
|
||||
padding-left: 1.3em;
|
||||
}
|
||||
#TOC > ul {
|
||||
padding-left: 0;
|
||||
}
|
||||
#TOC a:not(:hover) {
|
||||
text-decoration: none;
|
||||
}
|
||||
code{white-space: pre-wrap;}
|
||||
span.smallcaps{font-variant: small-caps;}
|
||||
span.underline{text-decoration: underline;}
|
||||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||||
div.columns{display: flex; gap: min(4vw, 1.5em);}
|
||||
div.column{flex: auto; overflow-x: auto;}
|
||||
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
||||
ul.task-list{list-style: none;}
|
||||
/* The extra [class] is a hack that increases specificity enough to
|
||||
override a similar rule in reveal.js */
|
||||
ul.task-list[class]{list-style: none;}
|
||||
ul.task-list li input[type="checkbox"] {
|
||||
font-size: inherit;
|
||||
width: 0.8em;
|
||||
margin: 0 0.8em 0.2em -1.6em;
|
||||
vertical-align: middle;
|
||||
}
|
||||
.display.math{display: block; text-align: center; margin: 0.5rem auto;}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<header id="title-block-header">
|
||||
<h1 class="title">dragonfeu_blog</h1>
|
||||
</header>
|
||||
<h1 id="stratégie-de-mitigation-de-laccident-de-fusion-du-cœur-sur-lepr.">Stratégie de mitigation de l’accident de fusion du cœur sur l’EPR.</h1>
|
||||
<p>J’imagine si vous avez cliqué sur cet article, vous savez que l’EPR de Flamanville vient de “diverger” ( <em>nota: article écrit en septembre 2024</em> ). Autrement dit la réaction en chaîne a été, et pour la première fois dans son cœur, auto-entretenue, permettant un équilibre neutronique.</p>
|
||||
<p>Ce fameux EPR présente de grandes avancées en sûreté nucléaire, toujours afin de limiter les rejets dans l’environnement en cas d’accident. Alors aujourd’hui, l’accident grave! <strong>On va parler de <em>corium</em> , de récupérateur à corium ( <em>core catcher</em> ), de stratégie de mitigation et de codes de calcul.</strong> Ce que je souhaite faire avec cet article c’est vous expliquer en premier lieu la physique d’une fusion du cœur et ensuite la modélisation qui y est associée.</p>
|
||||
<p><strong>Mais alors, comment les ingénieurs en sûreté nucléaire ont-ils réussi à gérer une substance bien pire que la lave ?</strong> Le corium, un magma à faire pâlir Hadès, autochauffant, ultra corrosif, à très haute température, ne laissant aucune chance à la plupart des matériaux qu’il rencontre. Possiblement la pire substance artificielle jamais fabriquée sur cette Terre (avec les agents neurotoxiques)…</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:700/1*J0BNk7bnCfDUgRr3K6y_bw.png" /></p>
|
||||
<p>La lave est une substance similaire au corium sur beaucoup d’aspects, mais le corium est… encore pire.</p>
|
||||
<p>Les réacteurs de génération III, comme l’EPR (ou l’EPR2), prennent en compte la gestion des accidents graves dès la conception. Je vais donc vous expliquer comment la stratégie de mitigation des accidents graves est conçue sur le réacteur EPR (notez que ce sera vraisemblablement la même sur EPR2, qui est une optimisation de l’EPR).</p>
|
||||
<p>L’accident grave de référence sur un réacteur à eau, est la fusion du cœur. Un évènement (une brèche par exemple), a pour conséquence directe un combustible qui n’est plus sous eau, donc plus refroidit, et il commence à chauffer, jusqu’à fondre. C’est ce qui s’est passé à <a href="https://www.irsn.fr/savoir-comprendre/crise/accident-fukushima-daiichi-japon-2011"><em>Fukushima</em></a> et <a href="https://www.irsn.fr/savoir-comprendre/surete/deroulement-laccident-0"><em>Three Miles Island</em></a> (fusion partielle), occasionnant des rejets dans l’environnement.</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:490/0*R7R5WF5O-tznduZZ.jpg" /></p>
|
||||
<p>EPR de Flamanville. Crédit: <a href="https://www.framatome.com/fr/clients/nucleaire/flamanville-3/">Framatome</a></p>
|
||||
<p>Avant de commencer, un rappel sur les trois barrières de confinement. Dans la suite de l’article, la 1ère et la 2ème barrière vont céder, et l’objectif sera de préserver la troisième, afin d’éviter des rejets à l’extérieur.</p>
|
||||
<p><a href="https://miro.medium.com/v2/resize:fit:692/0*hJdTyHIMSxkzowlX">https://miro.medium.com/v2/resize:fit:692/0*hJdTyHIMSxkzowlX</a></p>
|
||||
<p>Crédit: <a href="https://www.cli-gravelines.fr/la-centrale-de-gravelines/presentation-de-la-centrale/">EDF</a></p>
|
||||
<h1 id="i-phénoménologie-dun-accident-grave-sur-epr">I/ Phénoménologie d’un accident grave sur EPR</h1>
|
||||
<h1
|
||||
id="stratégie-de-mitigation-de-laccident-de-fusion-du-cœur-sur-lepr.">Stratégie
|
||||
de mitigation de l’accident de fusion du cœur sur l’EPR.</h1>
|
||||
<p>J’imagine si vous avez cliqué sur cet article, vous savez que l’EPR
|
||||
de Flamanville vient de “diverger” ( <em>nota: article écrit en
|
||||
septembre 2024</em> ). Autrement dit la réaction en chaîne a été, et
|
||||
pour la première fois dans son cœur, auto-entretenue, permettant un
|
||||
équilibre neutronique.</p>
|
||||
<p>Ce fameux EPR présente de grandes avancées en sûreté nucléaire,
|
||||
toujours afin de limiter les rejets dans l’environnement en cas
|
||||
d’accident. Alors aujourd’hui, l’accident grave! <strong>On va parler de
|
||||
<em>corium</em> , de récupérateur à corium ( <em>core catcher</em> ), de
|
||||
stratégie de mitigation et de codes de calcul.</strong> Ce que je
|
||||
souhaite faire avec cet article c’est vous expliquer en premier lieu la
|
||||
physique d’une fusion du cœur et ensuite la modélisation qui y est
|
||||
associée.</p>
|
||||
<p><strong>Mais alors, comment les ingénieurs en sûreté nucléaire
|
||||
ont-ils réussi à gérer une substance bien pire que la lave ?</strong> Le
|
||||
corium, un magma à faire pâlir Hadès, autochauffant, ultra corrosif, à
|
||||
très haute température, ne laissant aucune chance à la plupart des
|
||||
matériaux qu’il rencontre. Possiblement la pire substance artificielle
|
||||
jamais fabriquée sur cette Terre (avec les agents neurotoxiques)…</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:700/1*J0BNk7bnCfDUgRr3K6y_bw.png" /></p>
|
||||
<p>La lave est une substance similaire au corium sur beaucoup d’aspects,
|
||||
mais le corium est… encore pire.</p>
|
||||
<p>Les réacteurs de génération III, comme l’EPR (ou l’EPR2), prennent en
|
||||
compte la gestion des accidents graves dès la conception. Je vais donc
|
||||
vous expliquer comment la stratégie de mitigation des accidents graves
|
||||
est conçue sur le réacteur EPR (notez que ce sera vraisemblablement la
|
||||
même sur EPR2, qui est une optimisation de l’EPR).</p>
|
||||
<p>L’accident grave de référence sur un réacteur à eau, est la fusion du
|
||||
cœur. Un évènement (une brèche par exemple), a pour conséquence directe
|
||||
un combustible qui n’est plus sous eau, donc plus refroidit, et il
|
||||
commence à chauffer, jusqu’à fondre. C’est ce qui s’est passé à <a
|
||||
href="https://www.irsn.fr/savoir-comprendre/crise/accident-fukushima-daiichi-japon-2011"><em>Fukushima</em></a>
|
||||
et <a
|
||||
href="https://www.irsn.fr/savoir-comprendre/surete/deroulement-laccident-0"><em>Three
|
||||
Miles Island</em></a> (fusion partielle), occasionnant des rejets dans
|
||||
l’environnement.</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:490/0*R7R5WF5O-tznduZZ.jpg" /></p>
|
||||
<p>EPR de Flamanville. Crédit: <a
|
||||
href="https://www.framatome.com/fr/clients/nucleaire/flamanville-3/">Framatome</a></p>
|
||||
<p>Avant de commencer, un rappel sur les trois barrières de confinement.
|
||||
Dans la suite de l’article, la 1ère et la 2ème barrière vont céder, et
|
||||
l’objectif sera de préserver la troisième, afin d’éviter des rejets à
|
||||
l’extérieur.</p>
|
||||
<p><a
|
||||
href="https://miro.medium.com/v2/resize:fit:692/0*hJdTyHIMSxkzowlX">https://miro.medium.com/v2/resize:fit:692/0*hJdTyHIMSxkzowlX</a></p>
|
||||
<p>Crédit: <a
|
||||
href="https://www.cli-gravelines.fr/la-centrale-de-gravelines/presentation-de-la-centrale/">EDF</a></p>
|
||||
<h1 id="i-phénoménologie-dun-accident-grave-sur-epr">I/ Phénoménologie
|
||||
d’un accident grave sur EPR</h1>
|
||||
<h1 id="i.1-dégradation-du-cœur">I.1/ Dégradation du cœur</h1>
|
||||
<p>Le soleil se lève sur le site de Flamanville. <em>Le vent souffle sur les plaines de la Bretag</em> .. euh de la Normandie. Le réacteur EPR de Flamanville est à pleine puissance (1600MWe, ça envoie). Une bien belle journée. Et là, une énorme brèche sur le circuit primaire! On appelle ça un APRP ( <em>Accident de Perte du Réfrigérant Primaire</em>). Rien ne marche, ni refroidissement, ni électricité, le primaire se vide inexorablement. Il y a de moins en moins d’eau autour des crayons combustible, cf. (2) du schéma ci-dessous. Les gaines du combustible commencent à s’oxyder. C’est très exothermique, donc le combustible chauffe fort (oxydation zirconium + hafnium principalement), on produit de la vapeur d’eau et du dihydrogène. Le combustible et sa gaine fondent, alors que le niveau d’eau continue à baisser. Cette mixture infernale, au-delà des 2400°C, contenant le combustible, la gaine, l’acier des structures et autres joyeusetés, est appelée un <strong><em>corium</em></strong> .</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:700/1*xcZjQK8hEfk0OGoyvuVLjA.png" /></p>
|
||||
<p>Conditions initiales [1], cœur dénoyé partiellement [2], cœur dénoyé fusion en cours [3]. Crédit: IRSN</p>
|
||||
<p>Bon, je vais aller vite. Maintenant le cœur a fondu intégralement et il est dans le fond de cuve. Commence alors une série de phénomènes dans le corium qui vont venir attaquer l’acier de la cuve (pour les curieux, la cuve est en acier 16MND5, un acier de compétition, merci le RCC-M). La brèche a mis de l’eau dans l’enceinte et on a produit du dihydrogène pendant l’accident.</p>
|
||||
<p>Maintenant on va se donner <strong>trois contraintes supplémentaires, pour préserver l’enceinte de confinement,</strong> et garder toutes les saletés à l’intérieur, parce qu’on ne veut pas de rejets atmosphériques !</p>
|
||||
<p>Le soleil se lève sur le site de Flamanville. <em>Le vent souffle sur
|
||||
les plaines de la Bretag</em> .. euh de la Normandie. Le réacteur EPR de
|
||||
Flamanville est à pleine puissance (1600MWe, ça envoie). Une bien belle
|
||||
journée. Et là, une énorme brèche sur le circuit primaire! On appelle ça
|
||||
un APRP ( <em>Accident de Perte du Réfrigérant Primaire</em>). Rien ne
|
||||
marche, ni refroidissement, ni électricité, le primaire se vide
|
||||
inexorablement. Il y a de moins en moins d’eau autour des crayons
|
||||
combustible, cf. (2) du schéma ci-dessous. Les gaines du combustible
|
||||
commencent à s’oxyder. C’est très exothermique, donc le combustible
|
||||
chauffe fort (oxydation zirconium + hafnium principalement), on produit
|
||||
de la vapeur d’eau et du dihydrogène. Le combustible et sa gaine
|
||||
fondent, alors que le niveau d’eau continue à baisser. Cette mixture
|
||||
infernale, au-delà des 2400°C, contenant le combustible, la gaine,
|
||||
l’acier des structures et autres joyeusetés, est appelée un
|
||||
<strong><em>corium</em></strong> .</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:700/1*xcZjQK8hEfk0OGoyvuVLjA.png" /></p>
|
||||
<p>Conditions initiales [1], cœur dénoyé partiellement [2], cœur dénoyé
|
||||
fusion en cours [3]. Crédit: IRSN</p>
|
||||
<p>Bon, je vais aller vite. Maintenant le cœur a fondu intégralement et
|
||||
il est dans le fond de cuve. Commence alors une série de phénomènes dans
|
||||
le corium qui vont venir attaquer l’acier de la cuve (pour les curieux,
|
||||
la cuve est en acier 16MND5, un acier de compétition, merci le RCC-M).
|
||||
La brèche a mis de l’eau dans l’enceinte et on a produit du dihydrogène
|
||||
pendant l’accident.</p>
|
||||
<p>Maintenant on va se donner <strong>trois contraintes supplémentaires,
|
||||
pour préserver l’enceinte de confinement,</strong> et garder toutes les
|
||||
saletés à l’intérieur, parce qu’on ne veut pas de rejets atmosphériques
|
||||
!</p>
|
||||
<ol>
|
||||
<li><strong>On veut contrôler l’échauffement dans l’enceinte.</strong></li>
|
||||
<li><strong>On veut contrôler l’échauffement dans
|
||||
l’enceinte.</strong></li>
|
||||
</ol>
|
||||
<p>Pour ne pas chauffer l’enceinte il y a deux choses. Déjà, on ne veut pas que la cuve perce à haute pression, sinon le corium est étalé façon spray (sans rire), et vient attaquer l’enceinte. Et pour éviter une percée de la cuve à haute pression (supérieure à 15 bar), il faut dépressuriser la cuve, avec une soupape ultime (comme sur votre cocotte minute). Vous constaterez que la vanne dédiée à la gestion en AG est redondée, ce qui permet de diminuer la probabilité de défaillance de cette ligne de dépressurisation.</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:468/1*BkefLhWFwOfYhjaQr_ZFng.png" /></p>
|
||||
<p>Pour ne pas chauffer l’enceinte il y a deux choses. Déjà, on ne veut
|
||||
pas que la cuve perce à haute pression, sinon le corium est étalé façon
|
||||
spray (sans rire), et vient attaquer l’enceinte. Et pour éviter une
|
||||
percée de la cuve à haute pression (supérieure à 15 bar), il faut
|
||||
dépressuriser la cuve, avec une soupape ultime (comme sur votre cocotte
|
||||
minute). Vous constaterez que la vanne dédiée à la gestion en AG est
|
||||
redondée, ce qui permet de diminuer la probabilité de défaillance de
|
||||
cette ligne de dépressurisation.</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:468/1*BkefLhWFwOfYhjaQr_ZFng.png" /></p>
|
||||
<p>Crédit: IRSN</p>
|
||||
<p>Ensuite il faut contrôler la puissance thermique dans l’enceinte, c’est le système EVU (Evacuation Ultime de la puissance dans l’enceinte). Cela consiste simplement à asperger de l’eau froide à l’intérieur de l’enceinte. Une douche pour réacteur nucléaire. Cela sert aussi à faire retomber les radionucléides volatils dans l’enceinte.</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:700/0*52odtp_1Boboejuf.png" /></p>
|
||||
<p>Ensuite il faut contrôler la puissance thermique dans l’enceinte,
|
||||
c’est le système EVU (Evacuation Ultime de la puissance dans
|
||||
l’enceinte). Cela consiste simplement à asperger de l’eau froide à
|
||||
l’intérieur de l’enceinte. Une douche pour réacteur nucléaire. Cela sert
|
||||
aussi à faire retomber les radionucléides volatils dans l’enceinte.</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:700/0*52odtp_1Boboejuf.png" /></p>
|
||||
<p>Crédit: EDF</p>
|
||||
<p><strong>2\. On ne veut pas d’explosion hydrogène (type Fukushima) dans l’enceinte.</strong></p>
|
||||
<p>Dans l’enceinte il y a de l’air, de la vapeur d’eau, et maintenant de l’H2. Pour éviter l’explosion hydrogène, il faut consommer l’H2, afin de sortir des zones colorées du diagramme de Saphiro (ci-dessous). C’est le principe des recombineurs autocatalytiques passifs à hydrogène, qui comme leur nom l’indique, n’ont pas besoin d’électricité pour fonctionner.</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:453/1*bCstNg4HvBtiWtcP18vLTg.png" /></p>
|
||||
<p><strong>2\. On ne veut pas d’explosion hydrogène (type Fukushima)
|
||||
dans l’enceinte.</strong></p>
|
||||
<p>Dans l’enceinte il y a de l’air, de la vapeur d’eau, et maintenant de
|
||||
l’H2. Pour éviter l’explosion hydrogène, il faut consommer l’H2, afin de
|
||||
sortir des zones colorées du diagramme de Saphiro (ci-dessous). C’est le
|
||||
principe des recombineurs autocatalytiques passifs à hydrogène, qui
|
||||
comme leur nom l’indique, n’ont pas besoin d’électricité pour
|
||||
fonctionner.</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:453/1*bCstNg4HvBtiWtcP18vLTg.png" /></p>
|
||||
<p>Recombineur autocatalytique passif à dihydrogène.</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:373/1*ho1R4dJ41jGxMxCHd2sJQg.png" /></p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:373/1*ho1R4dJ41jGxMxCHd2sJQg.png" /></p>
|
||||
<p>Diagramme de Saphiro</p>
|
||||
<p><strong>3\. On ne veut pas d’explosion de vapeur dans l’enceinte.</strong></p>
|
||||
<p>L’eau liquide dans l’enceinte ne doit pas toucher le corium, sous peine d’une explosion de vapeur. Pour ça, c’est simple il faut séparer les deux.</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:476/1*yqJzEOmRI3KTX-ZPYGakvw.png" /></p>
|
||||
<p><strong>3\. On ne veut pas d’explosion de vapeur dans
|
||||
l’enceinte.</strong></p>
|
||||
<p>L’eau liquide dans l’enceinte ne doit pas toucher le corium, sous
|
||||
peine d’une explosion de vapeur. Pour ça, c’est simple il faut séparer
|
||||
les deux.</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:476/1*yqJzEOmRI3KTX-ZPYGakvw.png" /></p>
|
||||
<p>Séparation de l’eau et du core catcher.</p>
|
||||
<p><strong>Maintenant qu’on a nos systèmes pour protéger l’enceinte, il est temps de péter la cuve.</strong> Je ne vais pas détailler les phénomènes favorables qui permettent de maintenir la tenue mécanique de la cuve. On postule que sous l’effet des contraintes mécaniques (déformation) et des flux thermiques du corium (fluage), la cuve finit par se briser. Je dis « on postule » car ce n’est pas systématiquement l’approche retenue.</p>
|
||||
<p>Il y a plusieurs configurations possibles du corium en fond de cuve. Ce qu’on observe est une stratification du corium entre la couche d’oxyde et celle de métal léger. L’intuition amène à penser que la haute température du corium vient ablater la cuve. Cela est vrai au-delà de 2700°C, mais en dessous une croûte se forme en paroi, limitant les échanges thermiques. En revanche, la couche de métal léger très chaude reçoit de l’énergie de la couche d’oxyde, et transmet l’énergie à la face interne de la cuve, sur une faible surface relative “ <em>focusing effect”</em> . Elle est, d’après les expériences, la couche responsable de la rupture de la cuve.</p>
|
||||
<p>Je précise que c’est l’approche pénalisante retenue, la façon dont cela arrive nous intéresse assez peu ici car on part du principe que la cuve va rompre. L’étude des corium comporte son lot d’incertitudes et les expériences représentatives sont complexes à réaliser.</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:636/1*FDxHkbBZIKEy8tsZwPS5Bg.png" /></p>
|
||||
<p><strong>Maintenant qu’on a nos systèmes pour protéger l’enceinte, il
|
||||
est temps de péter la cuve.</strong> Je ne vais pas détailler les
|
||||
phénomènes favorables qui permettent de maintenir la tenue mécanique de
|
||||
la cuve. On postule que sous l’effet des contraintes mécaniques
|
||||
(déformation) et des flux thermiques du corium (fluage), la cuve finit
|
||||
par se briser. Je dis « on postule » car ce n’est pas systématiquement
|
||||
l’approche retenue.</p>
|
||||
<p>Il y a plusieurs configurations possibles du corium en fond de cuve.
|
||||
Ce qu’on observe est une stratification du corium entre la couche
|
||||
d’oxyde et celle de métal léger. L’intuition amène à penser que la haute
|
||||
température du corium vient ablater la cuve. Cela est vrai au-delà de
|
||||
2700°C, mais en dessous une croûte se forme en paroi, limitant les
|
||||
échanges thermiques. En revanche, la couche de métal léger très chaude
|
||||
reçoit de l’énergie de la couche d’oxyde, et transmet l’énergie à la
|
||||
face interne de la cuve, sur une faible surface relative “ <em>focusing
|
||||
effect”</em> . Elle est, d’après les expériences, la couche responsable
|
||||
de la rupture de la cuve.</p>
|
||||
<p>Je précise que c’est l’approche pénalisante retenue, la façon dont
|
||||
cela arrive nous intéresse assez peu ici car on part du principe que la
|
||||
cuve va rompre. L’étude des corium comporte son lot d’incertitudes et
|
||||
les expériences représentatives sont complexes à réaliser.</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:636/1*FDxHkbBZIKEy8tsZwPS5Bg.png" /></p>
|
||||
<p>Stratification du corium en fond de cuve possible.</p>
|
||||
<p>D’autres pays estiment qu’ils peuvent maintenir le corium dans la cuve. On ne distingue finalement que deux approches :</p>
|
||||
<p>D’autres pays estiment qu’ils peuvent maintenir le corium dans la
|
||||
cuve. On ne distingue finalement que deux approches :</p>
|
||||
<ul>
|
||||
<li>Rétention du corium en cuve ( <em>In Vessel Retention</em>, IVR) associé à des moyens de réfrigération externe de la cuve (type <em>External Reactor Vessel Cooling</em> , ERVC). Retenue sur AP1000 et APR1400.</li>
|
||||
<li>Rétention du corium hors cuve. <strong>Retenue sur EPR/EPR2</strong> , et les VVER-1200 récents.</li>
|
||||
<li>Rétention du corium en cuve ( <em>In Vessel Retention</em>, IVR)
|
||||
associé à des moyens de réfrigération externe de la cuve (type
|
||||
<em>External Reactor Vessel Cooling</em> , ERVC). Retenue sur AP1000 et
|
||||
APR1400.</li>
|
||||
<li>Rétention du corium hors cuve. <strong>Retenue sur EPR/EPR2</strong>
|
||||
, et les VVER-1200 récents.</li>
|
||||
</ul>
|
||||
<h1 id="i.2-linteraction-corium-béton">I.2/ L’interaction corium béton</h1>
|
||||
<p>On a désormais notre corium chaud qui tombe dans le fond du bâtiment réacteur. On arrive bientôt au <em>core catcher</em> , patience !</p>
|
||||
<p>Une fois tombé, il arrive sur un béton dit « sacrificiel ». Ce béton a vocation à être abalté par le corium pour modifier les propriétés physico-chimiques du corium. Durant cette phase, le corium érode ce béton sur environ 50 cm d’épaisseur avant de couler dans le canal de décharge qui relie le puits de cuve à « la chambre d’étalement ». Les mouvements convectifs au sein du corium mélangent le béton et le corium, le rendant plus fluide, plus homogène et moins visqueux afin de faciliter son écoulement par la suite. Si plusieurs coulées successives de corium surviennent, elles convergent toutes dans ce béton de manière à obtenir un corium homogène et un seul écoulement vers la chambre d’étalement. On appelle ça l’interation corium béton (ICB).</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:700/1*a9BqPHsyV-bAo0C79Szwkw.png" /></p>
|
||||
<h1 id="i.2-linteraction-corium-béton">I.2/ L’interaction corium
|
||||
béton</h1>
|
||||
<p>On a désormais notre corium chaud qui tombe dans le fond du bâtiment
|
||||
réacteur. On arrive bientôt au <em>core catcher</em> , patience !</p>
|
||||
<p>Une fois tombé, il arrive sur un béton dit « sacrificiel ». Ce béton
|
||||
a vocation à être abalté par le corium pour modifier les propriétés
|
||||
physico-chimiques du corium. Durant cette phase, le corium érode ce
|
||||
béton sur environ 50 cm d’épaisseur avant de couler dans le canal de
|
||||
décharge qui relie le puits de cuve à « la chambre d’étalement ». Les
|
||||
mouvements convectifs au sein du corium mélangent le béton et le corium,
|
||||
le rendant plus fluide, plus homogène et moins visqueux afin de
|
||||
faciliter son écoulement par la suite. Si plusieurs coulées successives
|
||||
de corium surviennent, elles convergent toutes dans ce béton de manière
|
||||
à obtenir un corium homogène et un seul écoulement vers la chambre
|
||||
d’étalement. On appelle ça l’interation corium béton (ICB).</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:700/1*a9BqPHsyV-bAo0C79Szwkw.png" /></p>
|
||||
<p>Crédit: IRSN</p>
|
||||
<p>ICB.</p>
|
||||
<p>Une fois que le corium a ablaté sur toute une épaisseur, il faut maintenir la structure de l’enceinte en état, et on installe donc sous cette couche de béton sacrificiel des matériaux réfractaires (qui résistent à des très hautes températures avec une faible déformation relative). Cette couche est appelée la zircone (ZETTRAL-95GR), et mesure de 10 à 14 cm d’épaisseur.</p>
|
||||
<p>Une fois que le béton est ablaté complètement dans le sens vertical, le corium arrive sur un bouchon de métal, c’est un composant dont le rôle est celui d’un fusible. Il est la dernière étape avant le canal de décharge. Ce fusible est conçu pour se rompre relativement rapidement au contact du corium en assurant une section de passage suffisamment large pour permettre une coulée rapide de la totalité du corium vers la chambre d’étalement.</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:700/1*T0TfHrMQoXXXwzbCrjhosw.png" /></p>
|
||||
<p>Une fois que le corium a ablaté sur toute une épaisseur, il faut
|
||||
maintenir la structure de l’enceinte en état, et on installe donc sous
|
||||
cette couche de béton sacrificiel des matériaux réfractaires (qui
|
||||
résistent à des très hautes températures avec une faible déformation
|
||||
relative). Cette couche est appelée la zircone (ZETTRAL-95GR), et mesure
|
||||
de 10 à 14 cm d’épaisseur.</p>
|
||||
<p>Une fois que le béton est ablaté complètement dans le sens vertical,
|
||||
le corium arrive sur un bouchon de métal, c’est un composant dont le
|
||||
rôle est celui d’un fusible. Il est la dernière étape avant le canal de
|
||||
décharge. Ce fusible est conçu pour se rompre relativement rapidement au
|
||||
contact du corium en assurant une section de passage suffisamment large
|
||||
pour permettre une coulée rapide de la totalité du corium vers la
|
||||
chambre d’étalement.</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:700/1*T0TfHrMQoXXXwzbCrjhosw.png" /></p>
|
||||
<p>Schéma complet du core catcher. Crédit: IRSN.</p>
|
||||
<p><strong>La composition chimique du béton est très importante</strong> car l’ablation va générer des gaz incondensables qui peuvent faire monter la pression dans l’enceinte. C’est le cas du CO2 issu de la calcination du calcaire, par exemple. Ainsi sur EPR, la <a href="https://www.irsn.fr/savoir-comprendre/surete/6-ans-apres-laccident-suivi-regulier-modifications-programme-experimental#:~:text=la procédure U5%2C qui a,procédant à des rejets filtrés.">procédure U5</a> a été abandonnée grâce à une fiabilisation de l’ICB. Sur le parc, cette procédure permet de dépressuriser l’enceinte en expulsant à l’atmosphère une partie des gaz préalablement nettoyés dans un filtre sable.</p>
|
||||
<p>Note: En principe, les chargements mécaniques de l’enceinte sont limités par conception. Mais il est possible qu’il y ait des rejets très minimes malgré tout sur EPR.</p>
|
||||
<h1 id="i.3-interaction-corium-zircone">I.3/ Interaction corium zircone</h1>
|
||||
<p>Cette partie sera assez simple, puisque l’objectif est de faire interagir le moins longtemps possible le corium avec la zircone. La zircone est ce qu’on appelle un <a href="https://fr.wikipedia.org/wiki/Matériau_réfractaire"><strong>matériau réfractaire</strong></a> <strong>à la chaleur</strong> . C’est-à-dire qu’il ne fond pas, et se déforme relativement peu, même à des hautes températures (inférieures à environ 1700°C, tout dépend du matériau).</p>
|
||||
<p>Une fois que le bouchon fusible a rompu, il faut emmener le corium jusque dans la chambre d’étalement <strong>le plus vite possible</strong> . A noter, la zircone a une forte inertie thermique, ce qui nous arrange pour ne pas dégrader outre mesure le bâtiment réacteur par contact prolongé, même si ce n’est pas censé arriver (toujours prendre des marges). Ainsi, une conduite entièrement tapissé en briques de zircone remplit ce rôle d’évacuation rapide du corium. C’est un tuyau d’évacuation pour corium.</p>
|
||||
<h1 id="i.4-corium-dans-la-chambre-détalement">I.4/ Corium dans la chambre d’étalement</h1>
|
||||
<p>Cette étape, la dernière, consiste à neutraliser le corium une bonne fois pour toute.</p>
|
||||
<p><strong>La composition chimique du béton est très importante</strong>
|
||||
car l’ablation va générer des gaz incondensables qui peuvent faire
|
||||
monter la pression dans l’enceinte. C’est le cas du CO2 issu de la
|
||||
calcination du calcaire, par exemple. Ainsi sur EPR, la <a
|
||||
href="https://www.irsn.fr/savoir-comprendre/surete/6-ans-apres-laccident-suivi-regulier-modifications-programme-experimental#:~:text=la procédure U5%2C qui a,procédant à des rejets filtrés.">procédure
|
||||
U5</a> a été abandonnée grâce à une fiabilisation de l’ICB. Sur le parc,
|
||||
cette procédure permet de dépressuriser l’enceinte en expulsant à
|
||||
l’atmosphère une partie des gaz préalablement nettoyés dans un filtre
|
||||
sable.</p>
|
||||
<p>Note: En principe, les chargements mécaniques de l’enceinte sont
|
||||
limités par conception. Mais il est possible qu’il y ait des rejets très
|
||||
minimes malgré tout sur EPR.</p>
|
||||
<h1 id="i.3-interaction-corium-zircone">I.3/ Interaction corium
|
||||
zircone</h1>
|
||||
<p>Cette partie sera assez simple, puisque l’objectif est de faire
|
||||
interagir le moins longtemps possible le corium avec la zircone. La
|
||||
zircone est ce qu’on appelle un <a
|
||||
href="https://fr.wikipedia.org/wiki/Matériau_réfractaire"><strong>matériau
|
||||
réfractaire</strong></a> <strong>à la chaleur</strong> . C’est-à-dire
|
||||
qu’il ne fond pas, et se déforme relativement peu, même à des hautes
|
||||
températures (inférieures à environ 1700°C, tout dépend du
|
||||
matériau).</p>
|
||||
<p>Une fois que le bouchon fusible a rompu, il faut emmener le corium
|
||||
jusque dans la chambre d’étalement <strong>le plus vite
|
||||
possible</strong> . A noter, la zircone a une forte inertie thermique,
|
||||
ce qui nous arrange pour ne pas dégrader outre mesure le bâtiment
|
||||
réacteur par contact prolongé, même si ce n’est pas censé arriver
|
||||
(toujours prendre des marges). Ainsi, une conduite entièrement tapissé
|
||||
en briques de zircone remplit ce rôle d’évacuation rapide du corium.
|
||||
C’est un tuyau d’évacuation pour corium.</p>
|
||||
<h1 id="i.4-corium-dans-la-chambre-détalement">I.4/ Corium dans la
|
||||
chambre d’étalement</h1>
|
||||
<p>Cette étape, la dernière, consiste à neutraliser le corium une bonne
|
||||
fois pour toute.</p>
|
||||
<ul>
|
||||
<li>une géométrie empêchant le retour en criticité (déjà rendu complexe par la dilution dans le béton sacrificiel),</li>
|
||||
<li>une géométrie empêchant le retour en criticité (déjà rendu complexe
|
||||
par la dilution dans le béton sacrificiel),</li>
|
||||
<li>un système pour refroidir le corium par-dessous et par-dessus.</li>
|
||||
</ul>
|
||||
<p>Le corium arrive dans la chambre d’étalement qui a une surface d’environ 170 m2. Le corium chaud, en coulant dans la conduite d’évacuation va couper un fil, ce qui déclenche l’ouverture d’une trappe ouvrant une arrivée d’eau gravitaire d’eau provenant du réservoir IRWST ( <em>In containment Refueling Water System Tank</em> ). Ce système est intégralement passif, ni électricité, ni intervention humaine nécessaire. Cette eau commence par remplir les canaux horizontaux situés sous la chambre d’étalement. Les éléments du plancher contiennent des canaux de refroidissement horizontaux de sections rectangulaires. L’intérieur de la chambre d’étalement est recouvert d’une couche de béton sacrificiel qui a la même fonction que le béton du puits de cuve, mais cette fois-ci il sert aussi à protéger temporairement la couche protectrice.</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:518/1*2KwlGcw32GEjG8HRp2f2Yw.png" /></p>
|
||||
<p>Le corium arrive dans la chambre d’étalement qui a une surface
|
||||
d’environ 170 m2. Le corium chaud, en coulant dans la conduite
|
||||
d’évacuation va couper un fil, ce qui déclenche l’ouverture d’une trappe
|
||||
ouvrant une arrivée d’eau gravitaire d’eau provenant du réservoir IRWST
|
||||
( <em>In containment Refueling Water System Tank</em> ). Ce système est
|
||||
intégralement passif, ni électricité, ni intervention humaine
|
||||
nécessaire. Cette eau commence par remplir les canaux horizontaux situés
|
||||
sous la chambre d’étalement. Les éléments du plancher contiennent des
|
||||
canaux de refroidissement horizontaux de sections rectangulaires.
|
||||
L’intérieur de la chambre d’étalement est recouvert d’une couche de
|
||||
béton sacrificiel qui a la même fonction que le béton du puits de cuve,
|
||||
mais cette fois-ci il sert aussi à protéger temporairement la couche
|
||||
protectrice.</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:518/1*2KwlGcw32GEjG8HRp2f2Yw.png" /></p>
|
||||
<p>Chambre d’étalement. Crédit: IRSN.</p>
|
||||
<p>Le corium va s’étaler dans cette chambre. C’est de la physique complexe (que je ne vais pas détailler ici). Cet étalement est piloté par la compétition entre les forces hydrodynamiques et les changements de viscosité du corium (rhéologie) dus à son refroidissement. La géométrie de cette chambre d’étalement est conçue pour optimiser l’étalement, et ainsi limiter l’épaisseur du corium, le rendant sous-critique et le préparant au renoyage en surface par-dessus.</p>
|
||||
<p>L’eau, froide donc, arrivant gravitairement de l’IRWST, vient noyer le corium très chaud, donc il y a création de vapeur (beaucoup de vapeur) sur les premiers instants du noyage. Cette vapeur est recondensée par le système EVU (la Force d’Action Rapide Nucléaire -FARN- est capable d’alimenter ce circuit depuis qu’elle est prévenue de l’accident grave).</p>
|
||||
<p>Une fois que la croûte se forme en surface du corium, il y a une vaporisation très limitée, et une fois le niveau d’eau atteint suffisant, le corium est définitivement stabilisé.</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:700/1*V3ByLTUdt8YT_oUs2Wse0Q.png" /></p>
|
||||
<p>Schéma d’un angle de la chambre d’étalement du corium. Crédit: IRSN.</p>
|
||||
<p>Pour conclure cette partie, une vidéo de présentation du <em>core catcher</em> de l’EPR de Flamanville.</p>
|
||||
<p>Le corium va s’étaler dans cette chambre. C’est de la physique
|
||||
complexe (que je ne vais pas détailler ici). Cet étalement est piloté
|
||||
par la compétition entre les forces hydrodynamiques et les changements
|
||||
de viscosité du corium (rhéologie) dus à son refroidissement. La
|
||||
géométrie de cette chambre d’étalement est conçue pour optimiser
|
||||
l’étalement, et ainsi limiter l’épaisseur du corium, le rendant
|
||||
sous-critique et le préparant au renoyage en surface par-dessus.</p>
|
||||
<p>L’eau, froide donc, arrivant gravitairement de l’IRWST, vient noyer
|
||||
le corium très chaud, donc il y a création de vapeur (beaucoup de
|
||||
vapeur) sur les premiers instants du noyage. Cette vapeur est
|
||||
recondensée par le système EVU (la Force d’Action Rapide Nucléaire
|
||||
-FARN- est capable d’alimenter ce circuit depuis qu’elle est prévenue de
|
||||
l’accident grave).</p>
|
||||
<p>Une fois que la croûte se forme en surface du corium, il y a une
|
||||
vaporisation très limitée, et une fois le niveau d’eau atteint
|
||||
suffisant, le corium est définitivement stabilisé.</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:700/1*V3ByLTUdt8YT_oUs2Wse0Q.png" /></p>
|
||||
<p>Schéma d’un angle de la chambre d’étalement du corium. Crédit:
|
||||
IRSN.</p>
|
||||
<p>Pour conclure cette partie, une vidéo de présentation du <em>core
|
||||
catcher</em> de l’EPR de Flamanville.</p>
|
||||
<p>Présentation de la construction du <em>core catcher</em> par EDF.</p>
|
||||
<p><a href="https://miro.medium.com/v2/resize:fit:700/0*-BaP_aooe3kpbSY7">https://miro.medium.com/v2/resize:fit:700/0*-BaP_aooe3kpbSY7</a></p>
|
||||
<p>Chambre d’étalement terminée sur l’EPR FA3. Crédit: <a href="https://x.com/EDFEPR/status/1488165234510602245">EDF-EPR sur X</a>.</p>
|
||||
<h1 id="ii-modélisation-dun-accident-grave"><strong>II/ Modélisation d’un accident grave</strong></h1>
|
||||
<p>On ne peut pas faire une expérience avec les mêmes conditions qu’un réacteur nucléaire, pour des raisons économiques, techniques et réglementaires. Alors on simule ça dans des codes de calcul. Un code de calcul ce sont des choix de modélisations, des incertitudes et donc <strong>ça se valide</strong> , sinon ça ne vaut pas grand-chose.</p>
|
||||
<p>Et ça se valide avec des expériences ! Les ingénieurs ne sont pas toujours derrière un ordinateur, l’approche empirique est <strong>indispensable</strong> ! Mais tu viens de dire qu’on ne faisait pas d’expériences réalistes ? Et oui, car on étudie chaque phase d’un accident grave <strong>séparément</strong>. Voyez ça comme des images qu’on imbrique entre elles. A la fin, l’ensemble des images forment un film, qui modélise un accident grave intégralement, ce qui permet <em>in fine</em> de contourner l’obstacle que représente l’impossibilité d’une expérience réaliste. Et comment on réalise ce film ? Avec un code de calcul intégral !</p>
|
||||
<p><a
|
||||
href="https://miro.medium.com/v2/resize:fit:700/0*-BaP_aooe3kpbSY7">https://miro.medium.com/v2/resize:fit:700/0*-BaP_aooe3kpbSY7</a></p>
|
||||
<p>Chambre d’étalement terminée sur l’EPR FA3. Crédit: <a
|
||||
href="https://x.com/EDFEPR/status/1488165234510602245">EDF-EPR sur
|
||||
X</a>.</p>
|
||||
<h1 id="ii-modélisation-dun-accident-grave"><strong>II/ Modélisation
|
||||
d’un accident grave</strong></h1>
|
||||
<p>On ne peut pas faire une expérience avec les mêmes conditions qu’un
|
||||
réacteur nucléaire, pour des raisons économiques, techniques et
|
||||
réglementaires. Alors on simule ça dans des codes de calcul. Un code de
|
||||
calcul ce sont des choix de modélisations, des incertitudes et donc
|
||||
<strong>ça se valide</strong> , sinon ça ne vaut pas grand-chose.</p>
|
||||
<p>Et ça se valide avec des expériences ! Les ingénieurs ne sont pas
|
||||
toujours derrière un ordinateur, l’approche empirique est
|
||||
<strong>indispensable</strong> ! Mais tu viens de dire qu’on ne faisait
|
||||
pas d’expériences réalistes ? Et oui, car on étudie chaque phase d’un
|
||||
accident grave <strong>séparément</strong>. Voyez ça comme des images
|
||||
qu’on imbrique entre elles. A la fin, l’ensemble des images forment un
|
||||
film, qui modélise un accident grave intégralement, ce qui permet <em>in
|
||||
fine</em> de contourner l’obstacle que représente l’impossibilité d’une
|
||||
expérience réaliste. Et comment on réalise ce film ? Avec un code de
|
||||
calcul intégral !</p>
|
||||
<p><strong>Présentation d’ASTEC</strong></p>
|
||||
<p>ASTEC, pour <em>Accident Source Term Evaluation Code</em> , est développé par l’ <em>Institut de Radioprotection de de Sûreté Nucléaire,</em> l’IRSN. C’est un code dit « intégral» c’est-à-dire qu’il simule toutes les étapes d’un accident grave. Cela comprend:</p>
|
||||
<p>ASTEC, pour <em>Accident Source Term Evaluation Code</em> , est
|
||||
développé par l’ <em>Institut de Radioprotection de de Sûreté
|
||||
Nucléaire,</em> l’IRSN. C’est un code dit « intégral» c’est-à-dire qu’il
|
||||
simule toutes les étapes d’un accident grave. Cela comprend:</p>
|
||||
<ul>
|
||||
<li>La thermohydraulique du circuit : module CESAR, proche du code de référence en thermohydraulique <a href="https://cathare.cea.fr/">CATHARE</a>, développé par le <em>Comissarait à l’Energie Atomique et aux Energies Alternatives</em> (CEA) ;</li>
|
||||
<li>La thermohydraulique du circuit : module CESAR, proche du code de
|
||||
référence en thermohydraulique <a
|
||||
href="https://cathare.cea.fr/">CATHARE</a>, développé par le
|
||||
<em>Comissarait à l’Energie Atomique et aux Energies Alternatives</em>
|
||||
(CEA) ;</li>
|
||||
<li>La dégradation du cœur : module ICARE ;</li>
|
||||
<li>L’interaction corium béton : module MEDICIS ;</li>
|
||||
<li>La chimie, la physique, le transport des gaz, aérosols et des produits de fission dans l’enceinte : modules SOPHAEROS, ISODOP, COVI ;</li>
|
||||
<li>La chimie, la physique, le transport des gaz, aérosols et des
|
||||
produits de fission dans l’enceinte : modules SOPHAEROS, ISODOP, COVI
|
||||
;</li>
|
||||
<li>Les systèmes de sureté : module SYSINT ;</li>
|
||||
<li>La thermohydraulique de l’enceinte : module CPA ;</li>
|
||||
<li>Le comportement des produits de fission : module ELSA ;</li>
|
||||
<li>L’évaluation des doses : module DOSE.</li>
|
||||
</ul>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:700/1*RLIofjCDlaOG4KpqdHri1A.png" /></p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:700/1*RLIofjCDlaOG4KpqdHri1A.png" /></p>
|
||||
<p>Les différents modules d’ASTEC. Crédit: IRSN.</p>
|
||||
<p>Vous trouverez plus d’infos sur : <a href="https://www.irsn.fr/recherche/systeme-logiciels-astec"><a href="https://www.irsn.fr/recherche/systeme-logiciels-astec">https://www.irsn.fr/recherche/systeme-logiciels-astec</a></a>. Voici également une courte présentation vidéo du code ASTEC, qui est désormais <strong>un code de référence en Europe sur les accidents graves des REP.</strong></p>
|
||||
<p>Vous trouverez plus d’infos sur : <a
|
||||
href="https://www.irsn.fr/recherche/systeme-logiciels-astec"><span>https://www.irsn.fr/recherche/systeme-logiciels-astec</span></a>.
|
||||
Voici également une courte présentation vidéo du code ASTEC, qui est
|
||||
désormais <strong>un code de référence en Europe sur les accidents
|
||||
graves des REP.</strong></p>
|
||||
<p><strong>Présentation vidéo d’ASTEC</strong></p>
|
||||
<p>Un code intégral doit répondre aux exigences suivantes :</p>
|
||||
<p>\- Calculer de façon exhaustive les phénomènes physiques intervenant lors d’un accident de fusion du cœur, en maintenant un compromis temps de calcul/précision ;</p>
|
||||
<p>\- simuler le comportement des principaux systèmes de sûreté du réacteur, afin de se placer dans des conditions similaires à celles d’un réacteur en accidentel, et tester différents scénarios de disponibilités des systèmes ;</p>
|
||||
<p>\- traiter complètement les couplages entre phénomènes, par exemple le refroidissement du corium dans le puits de cuve, en cours d’interaction corium-béton, par rayonnement et par convection dans l’enceinte de confinement ;</p>
|
||||
<p>\- être découpé en module indépendant, pour faciliter notamment les comparaisons avec des résultats expérimentaux et ainsi valider les modules ;</p>
|
||||
<p>\- Etre rapide malgré sa grande taille (de 400 000 à 500 000 instructions et 1 000 à 1 500 sous-programmes). C’est très important qu’il puisse pouvoir calculer plus vite que le temps réel, afin de tester un grand nombre de scénarios.</p>
|
||||
<p>\- Calculer de façon exhaustive les phénomènes physiques intervenant
|
||||
lors d’un accident de fusion du cœur, en maintenant un compromis temps
|
||||
de calcul/précision ;</p>
|
||||
<p>\- simuler le comportement des principaux systèmes de sûreté du
|
||||
réacteur, afin de se placer dans des conditions similaires à celles d’un
|
||||
réacteur en accidentel, et tester différents scénarios de disponibilités
|
||||
des systèmes ;</p>
|
||||
<p>\- traiter complètement les couplages entre phénomènes, par exemple
|
||||
le refroidissement du corium dans le puits de cuve, en cours
|
||||
d’interaction corium-béton, par rayonnement et par convection dans
|
||||
l’enceinte de confinement ;</p>
|
||||
<p>\- être découpé en module indépendant, pour faciliter notamment les
|
||||
comparaisons avec des résultats expérimentaux et ainsi valider les
|
||||
modules ;</p>
|
||||
<p>\- Etre rapide malgré sa grande taille (de 400 000 à 500 000
|
||||
instructions et 1 000 à 1 500 sous-programmes). C’est très important
|
||||
qu’il puisse pouvoir calculer plus vite que le temps réel, afin de
|
||||
tester un grand nombre de scénarios.</p>
|
||||
<p><strong>Fonctionnement d’ASTEC</strong></p>
|
||||
<p>Pour expliquer (très) rapidement, le logiciel ASTEC a besoin de données d’entrée, c’est-à-dire les géométries, les matériaux et les conditions physico-chimiques initiales de l’ensemble du réacteur. Ces données sont fournies par l’ingénieur d’étude en accident grave.</p>
|
||||
<p>A chaque pas de temps, ASTEC calcule l’évolution des paramètres physiques et chimiques. Dans un code intégral, il y a une articulation de tous les modules, avec un ordre d’exécution. On peut activer ou désactiver certains, selon le besoin, sachant que le nombre de modules impliqués augmente le temps de calcul !</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:529/1*eTmPXUnYlkBha3CUkd9zcA.png" /></p>
|
||||
<p>Comment fonctionne ASTEC à chaque pas de temps du calcul. Crédit: IRSN.</p>
|
||||
<p>/In fine, c/e qui intéresse l’ingénieur en sûreté nucléaire, ce sont les post-traitements des variables suivies ! Ci-dessous, un exemple de visualisation du cœur d’un REP-900MWe d’EDF. Ce que vous voyez est un post-traitement selon le temps des champs de température. Ce qu’il se passe dans cette séquence est une dégradation du cœur, vous voyez le niveau d’eau baisser progressivement jusqu’à être remplacé par le corium en fond de cuve. Vous constaterez que sur la 3ème image, la cuve a cassé au niveau de la couche de métal léger, à cause du <em>focusing effect</em> expliqué en partie I !</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:700/1*zF9mCPNrdduBhtW5o3B_lg.png" /></p>
|
||||
<p>Pour expliquer (très) rapidement, le logiciel ASTEC a besoin de
|
||||
données d’entrée, c’est-à-dire les géométries, les matériaux et les
|
||||
conditions physico-chimiques initiales de l’ensemble du réacteur. Ces
|
||||
données sont fournies par l’ingénieur d’étude en accident grave.</p>
|
||||
<p>A chaque pas de temps, ASTEC calcule l’évolution des paramètres
|
||||
physiques et chimiques. Dans un code intégral, il y a une articulation
|
||||
de tous les modules, avec un ordre d’exécution. On peut activer ou
|
||||
désactiver certains, selon le besoin, sachant que le nombre de modules
|
||||
impliqués augmente le temps de calcul !</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:529/1*eTmPXUnYlkBha3CUkd9zcA.png" /></p>
|
||||
<p>Comment fonctionne ASTEC à chaque pas de temps du calcul. Crédit:
|
||||
IRSN.</p>
|
||||
<p>/In fine, c/e qui intéresse l’ingénieur en sûreté nucléaire, ce sont
|
||||
les post-traitements des variables suivies ! Ci-dessous, un exemple de
|
||||
visualisation du cœur d’un REP-900MWe d’EDF. Ce que vous voyez est un
|
||||
post-traitement selon le temps des champs de température. Ce qu’il se
|
||||
passe dans cette séquence est une dégradation du cœur, vous voyez le
|
||||
niveau d’eau baisser progressivement jusqu’à être remplacé par le corium
|
||||
en fond de cuve. Vous constaterez que sur la 3ème image, la cuve a cassé
|
||||
au niveau de la couche de métal léger, à cause du <em>focusing
|
||||
effect</em> expliqué en partie I !</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:700/1*zF9mCPNrdduBhtW5o3B_lg.png" /></p>
|
||||
<p>Crédit: IRSN.</p>
|
||||
<p><strong>Validation d’ASTEC</strong></p>
|
||||
<p>Comme expliqué plus tôt, un code est une tentative de représentation du réel, il est donc nécessaire de le valider par comparaison avec… et bien le réel. Notez qu’on peut aussi valider un code en le comparant à des codes déjà validés. Par exemple le module thermohydraulique d’ASTEC, CESAR, est validé par comparaison avec le logiciel de référence <a href="https://cadarache.cea.fr/cad/Documents/Entreprises/Valorisation/Rencontres-CEA-Industrie/11eme/42-FM-f-CATHARE V 06 11 17.pdf">CATHARE</a>. Je ne vais pas m’attarder dessus.</p>
|
||||
<p>Le principe d’une validation empirique c’est de faire une expérience, de la modéliser dans le code de calcul le plus fidèlement possible, et de comparer les résultats issus des observations et des capteurs avec la simulation numérique. On constate souvent des écarts, l’objectif c’est de les réduire le plus possible tout en étant capable de dire pourquoi il y a des écarts et combien ils valent. ASTEC (en V2) est validé par un panel d’expériences assez immense, depuis 1990 et sans arrêt depuis. Cette validation s’appuie sur plus de 160 essais dans le monde entier, en particulier sur les essais Phébus, cf. <a href="https://www.irsn.fr/savoir-comprendre/surete/programme-recherche-phebus-pf-0"><a href="https://www.irsn.fr/savoir-comprendre/surete/programme-recherche-phebus-pf-0">https://www.irsn.fr/savoir-comprendre/surete/programme-recherche-phebus-pf-0</a></a>.</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:635/1*7I4QJzUPnNG044i98XIMWw.png" /></p>
|
||||
<p>Comme expliqué plus tôt, un code est une tentative de représentation
|
||||
du réel, il est donc nécessaire de le valider par comparaison avec… et
|
||||
bien le réel. Notez qu’on peut aussi valider un code en le comparant à
|
||||
des codes déjà validés. Par exemple le module thermohydraulique d’ASTEC,
|
||||
CESAR, est validé par comparaison avec le logiciel de référence <a
|
||||
href="https://cadarache.cea.fr/cad/Documents/Entreprises/Valorisation/Rencontres-CEA-Industrie/11eme/42-FM-f-CATHARE V 06 11 17.pdf">CATHARE</a>.
|
||||
Je ne vais pas m’attarder dessus.</p>
|
||||
<p>Le principe d’une validation empirique c’est de faire une expérience,
|
||||
de la modéliser dans le code de calcul le plus fidèlement possible, et
|
||||
de comparer les résultats issus des observations et des capteurs avec la
|
||||
simulation numérique. On constate souvent des écarts, l’objectif c’est
|
||||
de les réduire le plus possible tout en étant capable de dire pourquoi
|
||||
il y a des écarts et combien ils valent. ASTEC (en V2) est validé par un
|
||||
panel d’expériences assez immense, depuis 1990 et sans arrêt depuis.
|
||||
Cette validation s’appuie sur plus de 160 essais dans le monde entier,
|
||||
en particulier sur les essais Phébus, cf. <a
|
||||
href="https://www.irsn.fr/savoir-comprendre/surete/programme-recherche-phebus-pf-0"><span>https://www.irsn.fr/savoir-comprendre/surete/programme-recherche-phebus-pf-0</span></a>.</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:635/1*7I4QJzUPnNG044i98XIMWw.png" /></p>
|
||||
<p>Exemple de comparaison.</p>
|
||||
<p>Les essais Phébus constituent une grande base de validation des modules <a href="https://www.irsn.fr/sites/default/files/documents/larecherche/outils-scientifiques/codes-de-calcul/icare.pdf">CESAR & ICARE</a> (thermohydraulique et dynamique de dégradation) et <a href="https://www.irsn.fr/page/fission-product-transport-modelling-astec-integral-code-sophaeros-module">SOPHAEROS</a> (comportement des produits de fission).</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:700/1*Czs5OR9nKXm4WCbxkOlgDw.png" /></p>
|
||||
<p>Les essais Phébus constituent une grande base de validation des
|
||||
modules <a
|
||||
href="https://www.irsn.fr/sites/default/files/documents/larecherche/outils-scientifiques/codes-de-calcul/icare.pdf">CESAR
|
||||
& ICARE</a> (thermohydraulique et dynamique de dégradation) et <a
|
||||
href="https://www.irsn.fr/page/fission-product-transport-modelling-astec-integral-code-sophaeros-module">SOPHAEROS</a>
|
||||
(comportement des produits de fission).</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:700/1*Czs5OR9nKXm4WCbxkOlgDw.png" /></p>
|
||||
<p>Liste des essais Phébus.</p>
|
||||
<p>Il y a eu plein d’autres validations et l’objectif n’est pas de toutes les lister. Vous trouverez une liste des expériences menées sur ce lien: <a href="https://www.irsn.fr/recherche/systeme-logiciels-astec#validation"><a href="https://www.irsn.fr/recherche/systeme-logiciels-astec#validation">https://www.irsn.fr/recherche/systeme-logiciels-astec#validation</a></a></p>
|
||||
<h2 id="autre-code-utilisé-en-accident-grave"><strong>Autre code utilisé en accident grave</strong></h2>
|
||||
<p>ASTEC ne modélise pas la phase finale dans la chambre d’étalement de l’EPR. Pour cela, des programmes spécifiques ont été menés à l’international, avec des expériences passionnantes. L’objectif étant d’avoir une compréhension fine du phénomène d’étalement du corium, de son refroidissement, puis de son noyage. Les logiciels français sont respectivement THEMA (code CEA) qui calcule la cinétique de solidification du corium (en masse et en croûtes) ainsi que l’érosion du substrat. Et CROCO (code IRSN) qui permet une modélisation détaillée de la convection dans l’écoulement. Un grand nombre d’essais ont été menés, le plus impressionnant étant l’essai VULCANO, comme montré ci-dessous.</p>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:700/1*6YGczfyC8-4kDQXoWoIkQw.png" /></p>
|
||||
<p>Il y a eu plein d’autres validations et l’objectif n’est pas de
|
||||
toutes les lister. Vous trouverez une liste des expériences menées sur
|
||||
ce lien: <a
|
||||
href="https://www.irsn.fr/recherche/systeme-logiciels-astec#validation"><span>https://www.irsn.fr/recherche/systeme-logiciels-astec#validation</span></a></p>
|
||||
<h2 id="autre-code-utilisé-en-accident-grave"><strong>Autre code utilisé
|
||||
en accident grave</strong></h2>
|
||||
<p>ASTEC ne modélise pas la phase finale dans la chambre d’étalement de
|
||||
l’EPR. Pour cela, des programmes spécifiques ont été menés à
|
||||
l’international, avec des expériences passionnantes. L’objectif étant
|
||||
d’avoir une compréhension fine du phénomène d’étalement du corium, de
|
||||
son refroidissement, puis de son noyage. Les logiciels français sont
|
||||
respectivement THEMA (code CEA) qui calcule la cinétique de
|
||||
solidification du corium (en masse et en croûtes) ainsi que l’érosion du
|
||||
substrat. Et CROCO (code IRSN) qui permet une modélisation détaillée de
|
||||
la convection dans l’écoulement. Un grand nombre d’essais ont été menés,
|
||||
le plus impressionnant étant l’essai VULCANO, comme montré
|
||||
ci-dessous.</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:700/1*6YGczfyC8-4kDQXoWoIkQw.png" /></p>
|
||||
<p>Crédit: IRSN.</p>
|
||||
<p>Il est ressorti de l’ensemble de ces programmes de R&D que l’étalement à sec du corium de REP permet son refroidissement ultérieur car l’épaisseur de corium atteinte est suffisamment faible. Ainsi, l’approche retenue sur EPR est validée expérimentalement. Des incertitudes subsistent sur la capacité d’une nappe de corium à s’étaler sous eau, c’est pour cela que l’EPR fait le choix d’étaler le corium à sec en séparant physiquement eau et corium.</p>
|
||||
<p>Il est ressorti de l’ensemble de ces programmes de R&D que
|
||||
l’étalement à sec du corium de REP permet son refroidissement ultérieur
|
||||
car l’épaisseur de corium atteinte est suffisamment faible. Ainsi,
|
||||
l’approche retenue sur EPR est validée expérimentalement. Des
|
||||
incertitudes subsistent sur la capacité d’une nappe de corium à s’étaler
|
||||
sous eau, c’est pour cela que l’EPR fait le choix d’étaler le corium à
|
||||
sec en séparant physiquement eau et corium.</p>
|
||||
<h1 id="conclusion">Conclusion</h1>
|
||||
<p>Voilà comment on gère un accident grave sur l’EPR. J’ai volontairement éclipsé beaucoup de sujets sur le comportent des produits de fissions dans l’enceinte, sur les différentes possibilités de stratification du corium. J’ai aussi fait le choix de focaliser sur l’EPR alors qu’il existe aussi d’autres stratégies sur les autres réacteurs du parc de génération II (Les CP, P4/P’4 et N4). J’ai également restreint aux REP français, sans analyser les autres stratégies équivalentes sur <a href="https://fr.wikipedia.org/wiki/Réacteur_VVER">VVER</a>, <a href="https://fr.wikipedia.org/wiki/Réacteur_AP1000">AP1000</a>, ou <a href="https://fr.wikipedia.org/wiki/APR-1400">APR1400</a>. Je n’ai pas non plus parlé des filières à eau lourde (<a href="https://fr.wikipedia.org/wiki/Réacteur_CANDU">CANDU</a>), bouillantes (<a href="https://fr.wikipedia.org/wiki/Réacteur_à_eau_bouillante">BWR</a>, <a href="https://fr.wikipedia.org/wiki/Réacteur_ABWR">ABWR</a>), rapides (<a href="https://fr.wikipedia.org/wiki/Superphénix">SPX</a>) ou encore des filières thermiques (HTR & <a href="https://fr.wikipedia.org/wiki/Réacteur_nucléaire_à_très_haute_température">VHTR</a>) et à sels fondus (<a href="https://fr.wikipedia.org/wiki/Réacteur_nucléaire_à_sels_fondus">MSFR</a>). Chaque technologie, présente une stratégie adaptée. <strong>Tous les futurs réacteurs devront quoiqu’il en soit prendre en compte les accidents graves en compte</strong> .</p>
|
||||
<p>Je vous donne mes sources sur <a href="https://we.tl/t-Ubd7Pil4Np">ce lien</a> (attention il n’est valable que 7 jours). Tout est public et trouvable sur le site de l’ASN et/ou de l’IRSN.</p>
|
||||
<p>Voilà comment on gère un accident grave sur l’EPR. J’ai
|
||||
volontairement éclipsé beaucoup de sujets sur le comportent des produits
|
||||
de fissions dans l’enceinte, sur les différentes possibilités de
|
||||
stratification du corium. J’ai aussi fait le choix de focaliser sur
|
||||
l’EPR alors qu’il existe aussi d’autres stratégies sur les autres
|
||||
réacteurs du parc de génération II (Les CP, P4/P’4 et N4). J’ai
|
||||
également restreint aux REP français, sans analyser les autres
|
||||
stratégies équivalentes sur <a
|
||||
href="https://fr.wikipedia.org/wiki/Réacteur_VVER">VVER</a>, <a
|
||||
href="https://fr.wikipedia.org/wiki/Réacteur_AP1000">AP1000</a>, ou <a
|
||||
href="https://fr.wikipedia.org/wiki/APR-1400">APR1400</a>. Je n’ai pas
|
||||
non plus parlé des filières à eau lourde (<a
|
||||
href="https://fr.wikipedia.org/wiki/Réacteur_CANDU">CANDU</a>),
|
||||
bouillantes (<a
|
||||
href="https://fr.wikipedia.org/wiki/Réacteur_à_eau_bouillante">BWR</a>,
|
||||
<a href="https://fr.wikipedia.org/wiki/Réacteur_ABWR">ABWR</a>), rapides
|
||||
(<a href="https://fr.wikipedia.org/wiki/Superphénix">SPX</a>) ou encore
|
||||
des filières thermiques (HTR & <a
|
||||
href="https://fr.wikipedia.org/wiki/Réacteur_nucléaire_à_très_haute_température">VHTR</a>)
|
||||
et à sels fondus (<a
|
||||
href="https://fr.wikipedia.org/wiki/Réacteur_nucléaire_à_sels_fondus">MSFR</a>).
|
||||
Chaque technologie, présente une stratégie adaptée. <strong>Tous les
|
||||
futurs réacteurs devront quoiqu’il en soit prendre en compte les
|
||||
accidents graves en compte</strong> .</p>
|
||||
<p>Je vous donne mes sources sur <a href="https://we.tl/t-Ubd7Pil4Np">ce
|
||||
lien</a> (attention il n’est valable que 7 jours). Tout est public et
|
||||
trouvable sur le site de l’ASN et/ou de l’IRSN.</p>
|
||||
<h1 id="annexe"><strong>Annexe</strong></h1>
|
||||
<p><img src="https://miro.medium.com/v2/resize:fit:629/1*1Iepu71t1QQjOppTrNy7OQ.png" /></p>
|
||||
<p>[[<a href="https://medium.com/tag/nuclear?source=post_page-----f82c1d15ed58--------------------------------">https://medium.com/tag/nuclear?source=post_page-----f82c1d15ed58--------------------------------</a>][</p>
|
||||
<p><img
|
||||
src="https://miro.medium.com/v2/resize:fit:629/1*1Iepu71t1QQjOppTrNy7OQ.png" /></p>
|
||||
<p>[[<a
|
||||
href="https://medium.com/tag/nuclear?source=post_page-----f82c1d15ed58--------------------------------">https://medium.com/tag/nuclear?source=post_page-----f82c1d15ed58--------------------------------</a>][</p>
|
||||
<p>Nuclear</p>
|
||||
<p>]]</p>
|
||||
<p>[[<a href="https://medium.com/tag/accident?source=post_page-----f82c1d15ed58--------------------------------">https://medium.com/tag/accident?source=post_page-----f82c1d15ed58--------------------------------</a>][</p>
|
||||
<p>[[<a
|
||||
href="https://medium.com/tag/accident?source=post_page-----f82c1d15ed58--------------------------------">https://medium.com/tag/accident?source=post_page-----f82c1d15ed58--------------------------------</a>][</p>
|
||||
<p>Accident</p>
|
||||
<p>]]</p>
|
||||
<p>[[<a href="https://medium.com/tag/epr?source=post_page-----f82c1d15ed58--------------------------------">https://medium.com/tag/epr?source=post_page-----f82c1d15ed58--------------------------------</a>][</p>
|
||||
<p>[[<a
|
||||
href="https://medium.com/tag/epr?source=post_page-----f82c1d15ed58--------------------------------">https://medium.com/tag/epr?source=post_page-----f82c1d15ed58--------------------------------</a>][</p>
|
||||
<p>Epr</p>
|
||||
<p>]]</p>
|
||||
<p>[[<a href="https://medium.com/tag/astec?source=post_page-----f82c1d15ed58--------------------------------">https://medium.com/tag/astec?source=post_page-----f82c1d15ed58--------------------------------</a>][</p>
|
||||
<p>[[<a
|
||||
href="https://medium.com/tag/astec?source=post_page-----f82c1d15ed58--------------------------------">https://medium.com/tag/astec?source=post_page-----f82c1d15ed58--------------------------------</a>][</p>
|
||||
<p>Astec</p>
|
||||
<p>]]</p>
|
||||
<p>[[<a href="https://medium.com/tag/fukushima?source=post_page-----f82c1d15ed58--------------------------------">https://medium.com/tag/fukushima?source=post_page-----f82c1d15ed58--------------------------------</a>][</p>
|
||||
<p>[[<a
|
||||
href="https://medium.com/tag/fukushima?source=post_page-----f82c1d15ed58--------------------------------">https://medium.com/tag/fukushima?source=post_page-----f82c1d15ed58--------------------------------</a>][</p>
|
||||
<p>Fukushima</p>
|
||||
<p>]]</p>
|
||||
</body>
|
||||
|
|
|
@ -160,12 +160,162 @@ input, button, textarea, select {
|
|||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||||
<title>dragonfeu_blog</title>
|
||||
<style>
|
||||
html {
|
||||
color: #1a1a1a;
|
||||
background-color: #fdfdfd;
|
||||
}
|
||||
body {
|
||||
margin: 0 auto;
|
||||
max-width: 36em;
|
||||
padding-left: 50px;
|
||||
padding-right: 50px;
|
||||
padding-top: 50px;
|
||||
padding-bottom: 50px;
|
||||
hyphens: auto;
|
||||
overflow-wrap: break-word;
|
||||
text-rendering: optimizeLegibility;
|
||||
font-kerning: normal;
|
||||
}
|
||||
@media (max-width: 600px) {
|
||||
body {
|
||||
font-size: 0.9em;
|
||||
padding: 12px;
|
||||
}
|
||||
h1 {
|
||||
font-size: 1.8em;
|
||||
}
|
||||
}
|
||||
@media print {
|
||||
html {
|
||||
background-color: white;
|
||||
}
|
||||
body {
|
||||
background-color: transparent;
|
||||
color: black;
|
||||
font-size: 12pt;
|
||||
}
|
||||
p, h2, h3 {
|
||||
orphans: 3;
|
||||
widows: 3;
|
||||
}
|
||||
h2, h3, h4 {
|
||||
page-break-after: avoid;
|
||||
}
|
||||
}
|
||||
p {
|
||||
margin: 1em 0;
|
||||
}
|
||||
a {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
a:visited {
|
||||
color: #1a1a1a;
|
||||
}
|
||||
img {
|
||||
max-width: 100%;
|
||||
}
|
||||
h1, h2, h3, h4, h5, h6 {
|
||||
margin-top: 1.4em;
|
||||
}
|
||||
h5, h6 {
|
||||
font-size: 1em;
|
||||
font-style: italic;
|
||||
}
|
||||
h6 {
|
||||
font-weight: normal;
|
||||
}
|
||||
ol, ul {
|
||||
padding-left: 1.7em;
|
||||
margin-top: 1em;
|
||||
}
|
||||
li > ol, li > ul {
|
||||
margin-top: 0;
|
||||
}
|
||||
blockquote {
|
||||
margin: 1em 0 1em 1.7em;
|
||||
padding-left: 1em;
|
||||
border-left: 2px solid #e6e6e6;
|
||||
color: #606060;
|
||||
}
|
||||
code {
|
||||
font-family: Menlo, Monaco, Consolas, 'Lucida Console', monospace;
|
||||
font-size: 85%;
|
||||
margin: 0;
|
||||
hyphens: manual;
|
||||
}
|
||||
pre {
|
||||
margin: 1em 0;
|
||||
overflow: auto;
|
||||
}
|
||||
pre code {
|
||||
padding: 0;
|
||||
overflow: visible;
|
||||
overflow-wrap: normal;
|
||||
}
|
||||
.sourceCode {
|
||||
background-color: transparent;
|
||||
overflow: visible;
|
||||
}
|
||||
hr {
|
||||
background-color: #1a1a1a;
|
||||
border: none;
|
||||
height: 1px;
|
||||
margin: 1em 0;
|
||||
}
|
||||
table {
|
||||
margin: 1em 0;
|
||||
border-collapse: collapse;
|
||||
width: 100%;
|
||||
overflow-x: auto;
|
||||
display: block;
|
||||
font-variant-numeric: lining-nums tabular-nums;
|
||||
}
|
||||
table caption {
|
||||
margin-bottom: 0.75em;
|
||||
}
|
||||
tbody {
|
||||
margin-top: 0.5em;
|
||||
border-top: 1px solid #1a1a1a;
|
||||
border-bottom: 1px solid #1a1a1a;
|
||||
}
|
||||
th {
|
||||
border-top: 1px solid #1a1a1a;
|
||||
padding: 0.25em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
td {
|
||||
padding: 0.125em 0.5em 0.25em 0.5em;
|
||||
}
|
||||
header {
|
||||
margin-bottom: 4em;
|
||||
text-align: center;
|
||||
}
|
||||
#TOC li {
|
||||
list-style: none;
|
||||
}
|
||||
#TOC ul {
|
||||
padding-left: 1.3em;
|
||||
}
|
||||
#TOC > ul {
|
||||
padding-left: 0;
|
||||
}
|
||||
#TOC a:not(:hover) {
|
||||
text-decoration: none;
|
||||
}
|
||||
code{white-space: pre-wrap;}
|
||||
span.smallcaps{font-variant: small-caps;}
|
||||
span.underline{text-decoration: underline;}
|
||||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||||
div.columns{display: flex; gap: min(4vw, 1.5em);}
|
||||
div.column{flex: auto; overflow-x: auto;}
|
||||
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
||||
ul.task-list{list-style: none;}
|
||||
/* The extra [class] is a hack that increases specificity enough to
|
||||
override a similar rule in reveal.js */
|
||||
ul.task-list[class]{list-style: none;}
|
||||
ul.task-list li input[type="checkbox"] {
|
||||
font-size: inherit;
|
||||
width: 0.8em;
|
||||
margin: 0 0.8em 0.2em -1.6em;
|
||||
vertical-align: middle;
|
||||
}
|
||||
.display.math{display: block; text-align: center; margin: 0.5rem auto;}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue