This commit is contained in:
Tykayn 2025-01-15 22:20:14 +01:00 committed by tykayn
commit 996524bc6d
107 changed files with 1295536 additions and 0 deletions

View file

@ -0,0 +1,82 @@
import fs from "fs";
let sourceFilePath: string = './chargemap_data/hurepoix.json'
/**
makes a geojson from chargemap layer data
*/
function convertChargemapFile(sourceFilePath: string) {
fs.readFile(sourceFilePath, 'utf8', function (err, data) {
let data_transformed: any = JSON.parse(data)
let base_dataset: any = {type: 'FeatureCollection', features: []}
let base_point: any = {
type: 'Feature',
geometry: {
type: 'Point',
coordinates: []
},
properties: {
amenity: "charging_station"
}
}
console.log('data_transformed.items.length', data_transformed.items.length)
data_transformed.items.forEach((item: any) => {
let new_point: any = {...base_point}
if (item.type == 'point') {
new_point.geometry.coordinates = [
item.properties?.lat,
item.properties?.lng,
]
} else if (item.type == 'pool') {
new_point.geometry.coordinates = [
item.pool.gps_coordinates.lon,
item.pool.gps_coordinates.lat,
]
console.log('new_point.geometry.coordinates', new_point.geometry.coordinates)
}
base_dataset.features.push(new_point)
})
console.log('base_dataset.features.length', base_dataset.features.length)
if (base_dataset) {
writeFile('hurepoix_geojson.json', JSON.stringify(base_dataset, null, 2))
}
})
}
/**
* crée un fichier dans le dossier par défaut, output
* @param fileName
* @param fileContent
*/
function writeFile(fileName: string, fileContent: any) {
let output_folder = 'output';
return fs.writeFile(
`./${output_folder}/${fileName}`,
fileContent,
'utf8',
(err) => {
if (err) {
console.log(`Error writing file: ${err}`)
} else {
console.log(`File ${fileName} is written successfully!`)
}
}
)
}
convertChargemapFile(sourceFilePath)

9594
wip/chargemap/hurepoix.json Normal file

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,384 @@
{
"count": 18,
"items": [
{
"lat": 50.0743484,
"lng": 1.537268,
"icon": "cluster.png",
"type": "cluster",
"count": 33
},
{
"lat": 49.6465569,
"lng": 0.595749,
"icon": "cluster.png",
"type": "cluster",
"count": 31
},
{
"lat": 49.9614983,
"lng": 1.1935092,
"icon": "cluster.png",
"type": "cluster",
"count": 26
},
{
"lat": 50.1074982,
"lng": 1.8426746,
"icon": "cluster.png",
"type": "cluster",
"count": 24
},
{
"lat": 50.2155533,
"lng": 1.628114,
"icon": "cluster.png",
"type": "cluster",
"count": 22
},
{
"lat": 49.6115227,
"lng": 0.7733023,
"icon": "cluster.png",
"type": "cluster",
"count": 21
},
{
"lat": 49.9128304,
"lng": 1.0857821,
"icon": "cluster.png",
"type": "cluster",
"count": 20
},
{
"lat": 49.8144035,
"lng": 0.657026,
"icon": "cluster.png",
"type": "cluster",
"count": 16
},
{
"lat": 49.8280449,
"lng": 0.911511,
"icon": "cluster.png",
"type": "cluster",
"count": 15
},
{
"lat": 49.5984917,
"lng": 1.1111569,
"icon": "cluster.png",
"type": "cluster",
"count": 14
},
{
"lat": 49.6525497,
"lng": 1.6158921,
"icon": "cluster.png",
"type": "cluster",
"count": 11
},
{
"lat": 49.7663574,
"lng": 1.7457,
"icon": "cluster.png",
"type": "cluster",
"count": 9
},
{
"lat": 49.9557304,
"lng": 1.767372,
"icon": "cluster.png",
"type": "cluster",
"count": 7
},
{
"lat": 49.8437424,
"lng": 1.7790869,
"icon": "cluster.png",
"type": "cluster",
"count": 3
},
{
"lat": 49.6544685,
"lng": 1.832823,
"icon": "cluster.png",
"type": "cluster",
"count": 2
},
{
"lat": 49.5701447,
"lng": 0.4898517,
"icon": "cluster.png",
"type": "cluster",
"count": 2
},
{
"lat": 49.5702896,
"lng": 1.609848,
"icon": "icon-accelerated_on.png",
"type": "pool",
"pool": {
"amenities": [],
"city": "Saumont-la-Poterie",
"real_time_available": true,
"rating": null,
"i18n_country_id": 67,
"emsps": [],
"gps_coordinates": {
"lon": 1.609848,
"lat": 49.5702896
},
"street_name": "358 Route de Paris ",
"speed": {
"icon": "accelerated.svg",
"self": "charging_speeds/3.json",
"id": 3,
"map_icon": "accelerated.png"
},
"should_check_prices": true,
"number": null,
"schedules": [],
"object_state_id": 2,
"is_indoor": false,
"id": 285402,
"slug": "eco-pi-saumont-la-poterie-358-route-de-paris",
"can_remote_start_charge": false,
"statistic": {
"global_note_average": null,
"price_note_average": null,
"location_note_average": null,
"security_note_average": null,
"comments_count": 0,
"reports_count": 0,
"checkins_count": 0,
"material_note_average": null,
"creation_date": "2023-07-29T02:04:10+00:00",
"ratings_count": 1
},
"can_update_charging_pool": false,
"is_always_open": true,
"can_charge_with_chargemap": true,
"location_type_id": 21,
"network_id": 2340,
"evse_emi3_ids": [
"FR*EPI*E11734505*1"
],
"charging_connectors": [
{
"count": 5,
"available_count": 3,
"evse_ids": [
701375,
701376,
701379,
701377,
701378
],
"type": "MENNEKES_TYPE_2",
"connector_type": {
"id": 14,
"icon": "type2"
},
"power_max": 22
}
],
"is_free": false,
"name": "Eco-PI - Saumont-la-Poterie - 358 Route de Paris ",
"location_type_slug": "unknown",
"charging_speed_id": 3,
"postal_code": "76440",
"country_code": "FR",
"is_tesla": false,
"evses": [
{
"id": 701375,
"is_available": true,
"realtime_state": "AVAILABLE"
},
{
"id": 701376,
"is_available": true,
"realtime_state": "AVAILABLE"
},
{
"id": 701379,
"is_available": true,
"realtime_state": "AVAILABLE"
},
{
"id": 701377,
"is_available": false,
"realtime_state": "OUT_OF_ORDER"
},
{
"id": 701378,
"is_available": false,
"realtime_state": "OUT_OF_ORDER"
}
]
}
},
{
"lat": 49.5693893,
"lng": 0.953997,
"icon": "icon-accelerated_on.png",
"type": "pool",
"pool": {
"amenities": [
"drinks",
"restoration",
"shop",
"restroom"
],
"city": "Pavilly",
"real_time_available": true,
"rating": 4,
"i18n_country_id": 67,
"emsps": [
10,
75,
77,
107,
108,
112
],
"gps_coordinates": {
"lon": 0.953997,
"lat": 49.5693893
},
"street_name": "Place du Président d'Esneval",
"speed": {
"icon": "accelerated.svg",
"self": "charging_speeds/3.json",
"id": 3,
"map_icon": "accelerated.png"
},
"should_check_prices": true,
"number": "4",
"schedules": [],
"object_state_id": 2,
"is_indoor": false,
"id": 105727,
"slug": "sde76-place-du-president-desneval-4-pavilly",
"can_remote_start_charge": false,
"statistic": {
"global_note_average": 4,
"price_note_average": 5,
"location_note_average": 2,
"security_note_average": 5,
"comments_count": 0,
"reports_count": 0,
"checkins_count": 25,
"material_note_average": 2,
"creation_date": "2023-07-29T02:01:25+00:00",
"ratings_count": 1
},
"can_update_charging_pool": false,
"is_always_open": true,
"can_charge_with_chargemap": true,
"location_type_id": 4,
"network_id": 404,
"evse_emi3_ids": [
"FR*S76*E100*1*1"
],
"charging_connectors": [
{
"count": 4,
"available_count": 2,
"evse_ids": [
25003,
25004,
390745,
390747
],
"type": "DOMESTIC_TYPE_F",
"connector_type": {
"id": 6,
"icon": "schuko"
},
"power_max": 3
},
{
"count": 7,
"available_count": 4,
"evse_ids": [
25003,
25004,
390745,
390747,
390662,
390663,
390664
],
"type": "MENNEKES_TYPE_2",
"connector_type": {
"id": 14,
"icon": "type2"
},
"power_max": 22
},
{
"count": 3,
"available_count": 2,
"evse_ids": [
390662,
390663,
390664
],
"type": "DOMESTIC_TYPE_F",
"connector_type": {
"id": 6,
"icon": "schuko"
},
"power_max": 2
}
],
"is_free": false,
"name": "SDE76 - Place du Président d'Esneval, 4 - Pavilly",
"location_type_slug": "parking",
"charging_speed_id": 3,
"postal_code": "76570",
"country_code": "FR",
"is_tesla": false,
"evses": [
{
"id": 25003,
"is_available": true,
"realtime_state": "AVAILABLE"
},
{
"id": 25004,
"is_available": true,
"realtime_state": "AVAILABLE"
},
{
"id": 390745,
"is_available": false,
"realtime_state": "OUT_OF_ORDER"
},
{
"id": 390747,
"is_available": false,
"realtime_state": "OUT_OF_ORDER"
},
{
"id": 390662,
"is_available": false,
"realtime_state": "OUT_OF_ORDER"
},
{
"id": 390663,
"is_available": true,
"realtime_state": "AVAILABLE"
},
{
"id": 390664,
"is_available": true,
"realtime_state": "AVAILABLE"
}
]
}
}
]
}

184
wip/group_irve_stats.py Normal file
View file

@ -0,0 +1,184 @@
import pandas as pd
import folium
import plotly.graph_objects as go
import io
# Chargement du fichier JSON
with open('/home/poule/encrypted/stockage-syncable/www/development/html/mapping-geojson-osm/etalab_data/irve_bornes_recharge/latest.csv', 'r') as file:
data = pd.read_csv(file)
def format_puissance_nominale(value):
"""Formate la valeur de la puissance nominale"""
if value >= 1000:
return "{:,.1f} kW".format(value / 1000)
else:
return "{:,.0f} W".format(value)
# Création du DataFrame pandas
dataframe_irve = pd.DataFrame(data)
print("Nombre total de lignes avant suppression de duplicatas: ", len(dataframe_irve))
# enlever les duplicatas selon l'id du point de charge
dataframe_irve = dataframe_irve.drop_duplicates(subset=["id_pdc_itinerance"])
# enlever les duplicatas de placement
dataframe_irve = dataframe_irve.drop_duplicates(subset=["coordonneesXY"])
# enlever les lignes où on ne connait pas l'opérateur
dataframe_irve = dataframe_irve[(dataframe_irve["nom_operateur"].notnull()) & (dataframe_irve["nom_amenageur"].notnull())]
dataframe_irve = dataframe_irve[(dataframe_irve["coordonneesXY"].notnull())]
# Regroupement par opérateur
groups = dataframe_irve.groupby("nom_operateur")
dataframe_irve_sorted = dataframe_irve.sort_values(by="nom_operateur")
# Affichage du résultat
# print(dataframe_irve_sorted)
# Filtres pour identifier les lignes incorrectes
filtre_non_numerique = dataframe_irve["puissance_nominale"] % 1 > 0
filtre_incorrect = filtre_non_numerique
# Lignes incorrectes
erreurs_puissance_nominale = dataframe_irve[filtre_incorrect][[ "puissance_nominale", "id_station_itinerance"]]
groups_erreur = erreurs_puissance_nominale
print('groups en erreur: \n',)
groups_erreur.head()
# Minimum de puissance_nominale
puissance_nominale_min = dataframe_irve["puissance_nominale"].min()
# Maximum de puissance_nominale
puissance_nominale_max = dataframe_irve["puissance_nominale"].max()
print("\nMinimum de puissance_nominale : {}".format(puissance_nominale_min))
print("Maximum de puissance_nominale : {}\n".format(puissance_nominale_max))
# Impression du nombre de stations restantes
print("Nombre total de lignes : ", len(dataframe_irve))
# Application de la fonction de formatage à la colonne "puissance_nominale"
dataframe_irve["puissance_nominale_formatted"] = dataframe_irve["puissance_nominale"].apply(format_puissance_nominale)
# Remplacement de la colonne originale par celle nouvellement formatée
dataframe_irve["puissance_nominale"] = dataframe_irve["puissance_nominale_formatted"]
del dataframe_irve["puissance_nominale_formatted"]
# Compte le nombre d'anomalies pour chaque opérateur
def count_errors_for_each_operator():
# Initialisation du dictionnaire vide servant au stockage temporaire
temp_dict = dict()
for _, row in dataframe_irve.iterrows():
operator = str(row["nom_operateur"])
# Test uniquement les entrées textuelles présentes dans la colonne "puissance_nominale"
power_entry = str(row["puissance_nominale"]).replace('W', '').replace(' ', '')
if 'k' in power_entry or power_entry[-2:] == ". " or int(power_entry) > 6000 or int(power_entry) < 0:
if operator not in temp_dict:
temp_dict[operator] = {"error_count": 1}
else:
current_error_count = temp_dict[operator]["error_count"] + 1
temp_dict[operator] = {"error_count": current_error_count}
# Transformation du dictionnaire local en liste de tuples
return sorted([(key, val["error_count"]) for key, val in temp_dict.items()], key=lambda x: -x[1])
# Passage du DataFrame à la fonction
countland = count_errors_for_each_operator()
print("\nListe des opérateurs classés par nombre d'anomalies :'" , countland)
# Affichage des résultats
# print("\nListe des opérateurs classés par nombre d'anomalies : ")
for i, item in enumerate(countland):
print("{} - Opérateur : {}, Anomalies : {}".format(i+1, item[0], item[1]))
# ============== graphique ============================
import plotly.express as px
import plotly.io as pio
pio.renderers.default = "svg"
# Spécification du nom et du path du fichier de sortie
output_filename = "puissances_repartition.svg"
# Génération du graphe
# fig = px.histogram(
# dataframe_irve,
# x="puissance_nominale",
# title="Répartition des Puissances",
# labels={'puissance_nominale': 'Puissance'},
# color_discrete_sequence=px.colors.sequential.Plasma_r,
# opacity=0.7,
# hover_name="nom_operateur",
# category_orders={'puissance_nominale': ['<1 kW', '1 kW', '2 kW', '3 kW', '5 kW', '6 kW', '8 kW', '11 kW', '12 kW', '15 kW', '22 kW', '30 kW', '43 kW', '50 kW', '150 kW']},
# )
# Visualisation du graphe
# fig.show()
# Sauvegarde du graphe Plotly sous forme de fichier SVG
# fig.write_image(output_filename, engine='kaleido', scale=1.0)
#
# # Display the generated filename
# print("\nGraph saved to:", output_filename)
dataframe_irve.to_csv("output/cleaned_irve_from_cipherbliss.csv", index=False)
# ============ carte svg
# Colonne "coordonneesXY" est un string, transformation en tuple
dataframe_irve[['latitude','longitude']] = dataframe_irve['coordonneesXY'].str.findall(r'(-?[\d]+(\.[0-9]*)?)').apply(pd.Series)
dataframe_irve['latitude'].head()
# Centrer la map sur la france
france_center = [47.5, 2.5]
# map_folium = folium.Map(location=france_center, zoom_start=5)
#
# # Itération sur chaque point géographique pour l'ajouter à la map Folium
# for index, row in dataframe_irve.iterrows():
# location = [row['latitude'], row['longitude']]
# icon = folium.Icon(color='blue', icon='info-sign')
# tooltip = "<strong>{}</strong>{}".format(row['id_station_itinerance'], row['adresse_station'])
# popup = '<div style="width:10rem;">{}</div>'.format(row['nom_station'])
# marker = folium.Marker(location, popup=popup, tooltip=tooltip, icon=icon)
# marker.add_to(map_folium)
#
# # Objet graphique Plotly contenant la carte Folium encodée
# plotly_chart = go.Figure(go.Scattergeo(
# lon=[row['longitude'] for index, row in dataframe_irve.iterrows()],
# lat=[row['latitude'] for index, row in dataframe_irve.iterrows()]
# ))
#
# # Configuration de l'apparence visuelle
# plotly_chart.update_geos(fitbounds="locations", visible=True)
# plotly_chart.update_layout(
# geo_scope="world",
# margin={"r":0,"t":0,"l":0,"b":0},
# paper_bgcolor="#FFFFFF",
# plot_bgcolor="#FFFFFF",
# showlegend=False
# )
# Encapsulation de la carte Plotly dans un objet BytesIO
# buffer = io.BytesIO()
# plotly_chart.write_html(buffer, auto_open=False)
# buffer.seek(0)
# Affichage de la carte Plotly
# plotly.io.write_image(plotly_chart, "carte_stations.svg", format="svg", engine="kaleido")

View file

@ -0,0 +1,35 @@
const stations = [
{
id: 1,
name: 'Tesla Supercharger',
address: '123 Main St',
lat: 37.7749,
lon: -122.4194,
network_operator: 'Tesla'
},
{
id: 2,
name: 'Electrify America',
address: '456 Maple Ave',
lat: 40.7128,
lon: -74.0060,
network_operator: 'Electrify America'
},
{id: 3, name: 'ChargePoint', address: '789 Oak St', lat: 34.0522, lon: -118.2437, network_operator: 'ChargePoint'},
];
interface Station {
[key: string]: string
}
function groupStationsByNetworkOperator(stations: Station[]) {
}
function groupStationsByNetworkOperatorAndWriteToFiles(stations: any[], outputDir: string) {
}
groupStationsByNetworkOperatorAndWriteToFiles(stations, "output")